Follow-up and Time to Treatment in an Urban Cohort of Children with Sleep-Disordered Breathing

Vandra C. Harris, MD1, Anne R. Links, MS, MHS1, Julia M. Kim, MD, MPH2, Jonathan Walsh, MD1, David E. Tunkel, MD1, and Emily F. Boss, MD, MPH1,3

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Abstract

Objective. To evaluate follow-up and timing of sleep-disordered breathing diagnosis and treatment in urban children referred from primary care.

Study Design. Retrospective longitudinal cohort analysis.

Setting. Tertiary health system.

Subjects and Methods. Pediatric outpatients with sleep-disordered breathing, referred from primary care for subspecialty appointment or polysomnography in 2014, followed for 2 years. Timing of polysomnography or subspecialty appointments, loss to follow-up, and sleep-disordered breathing severity were main outcomes. Chi-square and t-test identified differences in children referred for polysomnography, surgery, and loss to follow-up. Logistic regression identified predictors of loss to follow-up. Days to polysomnography or surgery were evaluated using the Kaplan-Meier estimator, with Cox regression comparing estimates by polysomnography receipt and disease severity.

Results. Of 216 children, 188 (87%) had public insurance. Half (109 [50%]) were lost to follow-up after primary care referral. More children were lost to follow-up when referred for polysomnography (50 [76%]) compared with subspecialty evaluation (35 [32%]; P < .001). Children referred to both polysomnography and subspecialty were more likely to be lost to follow-up (odds ratio = 2.73, 95% confidence interval = 1.29-5.78; P = .009). For children who obtained polysomnography, an asymmetric distribution of obstructive sleep apnea severity was not observed (P = .152). Median time to polysomnography and surgery was 75 and 226 days, respectively. Obstructive sleep apnea severity did not influence time to surgery (P = .410).

Conclusion. In this urban population, half of the children referred for sleep-disordered breathing evaluation are lost to follow-up from primary care. Obstructive sleep apnea severity did not predict follow-up or timeliness of treatment. These findings suggest social determinants may pose barriers to care in addition to the clinical burden of sleep-disordered breathing.

Keywords

sleep-disordered breathing, obstructive sleep apnea, polysomnography, adenotonsillectomy, treatment, access to care, health disparities, socioeconomic status, children, pediatrics

Received September 19, 2017; revised February 15, 2018; accepted March 30, 2018.

The National Academy of Medicine defines a health care disparity as a “difference in treatment or access not justified by the differences in health status or preferences of the groups.”1 Disparities in pediatric surgical care have been noted in the management of appendicitis, retinoblastoma, and congenital heart surgery, with ethnic minorities and children in low-income settings being more likely to have greater time intervals from referral to treatment as well as poorer outcomes.2-6 Socioeconomic status strongly influences children’s health status, with children in low-income settings frequently having poor to fair health status.7,8 In addition, children from low-income families tend to experience greater barriers to obtaining care for their health problems.1,9-12

1Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
2Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
3Department of Health Policy and Management, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA

This article was presented as a poster at the 2017 AAO-HNSF Annual Meeting & OTO EXPO, September 10-13, 2017; Chicago, Illinois.

Corresponding Author:
Emily F. Boss, MD, MPH, Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, 601 N Caroline St, Baltimore, MD 21287, USA.
Email: erudnic2@jhu.edu
Socioeconomic disparities have been described in pediatric otolaryngologic conditions such as otitis media, pharyngitis, and sinusitis, with low socioeconomic status children often experiencing longer time with disease prior to treatment and more clinical complications of disease. Furthermore, children with low socioeconomic status may have less access to otolaryngology surgical services including tonsillectomy and cochlear implantation due to insurance restrictions. Specifically, disparities in pediatric sleep medicine have been noted. Wang et al showed that children with Medicaid in California were far less likely to obtain an appointment for evaluation or surgery for treatment of obstructive sleep apnea (OSA) compared with children with private insurance. Although children with low socioeconomic status have an increased risk of sleep-disordered breathing (SDB) and OSA, this is not reflected in adenotonsillectomy rates among this population. These children are also at increased risk of comorbidities, such as obesity, poor academic performance, and behavior issues (including attention-deficit hyperactivity disorder), which are also consequences of untreated SDB.

Proposed explanations for these disparities have been attributed to factors such as household crowding, increased prevalence of obesity, or higher exposure to secondhand smoke for children with low socioeconomic status. Proposed explanations for these disparities have been attributed to factors such as household crowding, increased prevalence of obesity, or higher exposure to secondhand smoke for children with low socioeconomic status. In a previous study, we described that at our institution, children with public insurance experience longer time intervals from initial subspecialty evaluation to polysomnography (PSG) or surgery as compared with children with private insurance. While there was no association between insurance status and loss to follow-up, loss to follow-up was prevalent in nearly half of children referred for PSG. However, this study was unable to determine specific patient- or family-level reasons for the large proportion of loss to follow-up, and the children were identified after they had reached subspecialty care. In the present study, we aim to expand this body of knowledge by evaluating loss to follow-up and time to treatment in children referred for SDB evaluation from initial primary care visit in a primarily low-income population.

Methods

We performed a retrospective longitudinal cohort analysis of pediatric outpatients seen in Johns Hopkins Hospital–affiliated pediatric primary care clinics. This study was approved by the Johns Hopkins Institutional Review Board. Using electronic health record referral data, we pulled data for all referrals made in 2014 from pediatric primary care in the Johns Hopkins Health System to the following subspecialties: sleep medicine, otolaryngology, pediatric otolaryngology, pediatric sleep medicine, and pediatric pulmonology. We included children (≤18 years) referred for evaluation by PSG or subspecialty appointment (otolaryngology or pulmonology) for diagnoses related to SDB (adenotonsillar hypertrophy, noisy breathing, snoring, and OSA). We excluded patients older than 18 years and those referred for evaluation of diagnoses unrelated to SDB.

Clinical information abstracted included PSG results (Respiratory Disturbance Index, oxygen saturation nadir, peak end-tidal CO2, Apnea-Hypopnea Index [AHI]), and comorbidities. Severity of OSA was determined based on results of PSG, with an AHI of 1 to 4.9 indicating mild OSA, AHI of 5 to 9.9 indicating moderate OSA, and an AHI >10 indicating severe OSA. Records were also analyzed to assess timeline of care: date of the initial primary care visit, date of subspecialty visit, date of PSG, and date of surgery were each recorded. Time intervals in days from initial primary care visit to subspecialty visit, PSG, and surgery were calculated. Patients were considered lost to follow-up if they were referred from primary care to PSG or subspecialty evaluation and did not have any encounters documented for 2 years after referral date.

Statistical Analysis

Main outcome measures were timing of PSG and subspecialty appointments as well as loss to follow-up. Chi-square analysis was conducted to identify differences in receipt of PSG or surgery, insurance type, and loss to follow-up between racial or ethnic groups and referral types. Mean age was compared using t test. Multivariate logistic regression analyses were conducted to identify variables predictive of loss to follow-up. Age, race, gender, and all referral dispositions were included in the model, with age coded as a continuous variable in years. Linear regression analysis was done to identify differences between days to PSG and surgery. Kaplan-Meier (K-M) survival analysis and Cox regression tests were used to compare time-to-treatment distributions and attrition rates by PSG receipt and OSA severity. Kolmogorov-Smirnov test was used to assess equality of OSA severity distribution. All analysis was performed using Stata statistical software (version 14; Stata Corp, College Station, TX). P < .05 was considered significant for all analyses.

Results

Two hundred sixteen children were referred from primary care for SDB evaluation. Table I lists patient demographics and clinical characteristics. Most children referred were black (171 [79%]), with a smaller number of white (5 [2%]), Hispanic (28 [13%]), bi- or multiracial (6 [3%]), and children with unidentified race (6 [3%]). Children lost to follow-up were older compared with children who did follow up (median age 8.01 years vs 6.81 years; P = .049). There were no significant differences in race or ethnicity between the children who were lost to follow-up and the children who did follow up (P = .056). Most children (188 [87%]) had public insurance. Half of the children were lost to follow-up after primary care referral (109 [50%]). There were fewer children lost to follow-up when referred for subspecialty evaluation versus referral to PSG (16 [32%] vs 50 [76%]; P < .001). For children who obtained PSG, an
asymmetric distribution of OSA severity was not observed \((P = .152)\) after Kolmogorov-Smirnov analysis, where relatively the same proportion of children had mild, moderate, severe, or absence of sleep apnea (Figure 1).

Multivariate analysis for predictors of loss to follow-up are shown in Table 2. The variables listed in the table were all included in the model. Children referred to both PSG and subspecialty evaluation were more likely to be lost to follow-up (odds ratio \([OR] = 2.73\), 95% confidence interval \([CI] = 1.29-5.78\), \(P = .009\)). Children referred for subspecialty evaluation were less likely to be lost to follow-up \((OR = 0.36\), 95% CI = 0.17-0.77, \(P = .009\)). Multivariate analysis comparing loss to follow-up by subspecialty referral revealed a decreased likelihood of being lost to follow-up if referred to otolaryngology versus pulmonology \((OR = 0.12\), 95% CI = 0.12-0.42, \(P < .001\)). For the children who underwent PSG, OSA severity was not a predictor for likelihood to follow-up \((P = .231)\).

Overall, 46 (21%) children underwent surgical intervention with adenotonsillectomy (3 white, 30 black, 11 Hispanic, 1 bi- or multiracial child, and 1 child with

Table 1. Patient Demographics and Clinical Characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total ((N = 216))</th>
<th>Lost to Follow-up ((n = 109))</th>
<th>Not Lost to Follow-up ((n = 107))</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>Mean (SD)</td>
<td>7.7 (4.16)</td>
<td>8.25 (4.46)</td>
<td>7.14 (3.78)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>7.41</td>
<td>8.01</td>
<td>6.81</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>0.33-17.72</td>
<td>0.33-17</td>
<td>0.51-17.72</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td>Male</td>
<td>116 (54)</td>
<td>60 (55)</td>
<td>56 (52)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>100 (46)</td>
<td>49 (45)</td>
<td>51 (48)</td>
</tr>
<tr>
<td>Race or ethnicity, n (%)</td>
<td>White</td>
<td>5 (2)</td>
<td>2 (2)</td>
<td>3 (3)</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>171 (79)</td>
<td>94 (86)</td>
<td>77 (72)</td>
</tr>
<tr>
<td></td>
<td>Hispanic or Latino</td>
<td>28 (13)</td>
<td>7 (6)</td>
<td>21 (19)</td>
</tr>
<tr>
<td></td>
<td>Bi- or multiracial</td>
<td>6 (3)</td>
<td>3 (3)</td>
<td>3 (3)</td>
</tr>
<tr>
<td></td>
<td>Unidentified</td>
<td>6 (3)</td>
<td>3 (3)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Insurance, n (%)</td>
<td>Private</td>
<td>27 (12.5)</td>
<td>12 (11)</td>
<td>15 (14)</td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>188 (87)</td>
<td>97 (89)</td>
<td>91 (85)</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>1 (0.5)</td>
<td>0</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td>Asthma</td>
<td>82 (38)</td>
<td>41 (38)</td>
<td>41 (38)</td>
</tr>
<tr>
<td></td>
<td>Obesity(^a)</td>
<td>81 (38)</td>
<td>46 (42)</td>
<td>35 (33)</td>
</tr>
<tr>
<td></td>
<td>Attention-deficit hyperactivity disorder</td>
<td>26 (12)</td>
<td>14 (13)</td>
<td>12 (11)</td>
</tr>
<tr>
<td></td>
<td>Down syndrome</td>
<td>4 (2)</td>
<td>1 (0.9)</td>
<td>3 (3)</td>
</tr>
<tr>
<td></td>
<td>Autism</td>
<td>2 (1)</td>
<td>1 (0.9)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td></td>
<td>Craniofacial</td>
<td>1 (0.5)</td>
<td>1 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Referral type(^b)</td>
<td>Referred to otolaryngology or pulmonology</td>
<td>108 (50)</td>
<td>35 (32)</td>
<td>73 (68)</td>
</tr>
<tr>
<td></td>
<td>Referred to polysomnography</td>
<td>66 (31)</td>
<td>50 (45)</td>
<td>16 (15)</td>
</tr>
<tr>
<td></td>
<td>Referred for both</td>
<td>42 (19)</td>
<td>24 (22)</td>
<td>18 (17)</td>
</tr>
</tbody>
</table>

\(^a\) Obesity was defined as body mass index greater than or equal to the 95th percentile for age.\(^{31}\)

\(p = 0.152\)

Figure 1. Severity of obstructive sleep apnea in children who obtained polysomnography \((n = 107)\). Includes children referred for polysomnography by subspecialist \((n = 28)\). Chi-square analysis was used for referral type comparison.
unidentified race) independent of race or ethnicity ($P = .608$). A larger proportion of children with severe OSA underwent surgical intervention (5 no OSA, 12 mild, 8 moderate, 27 severe OSA; $P = .046$).

Time to treatment data are shown in Table 3. There was a median interval of 75 days from initial primary care visit to PSG (mean = 114.92, range = 7-711) and a median interval of 226 days from primary care visit to surgery (mean = 288.43, range = 21-749). For children who obtained PSG and underwent surgery, there was a median interval of 129 days from PSG to surgery (mean = 157.80, range = 31-455). Children with OSA experienced longer median time intervals from initial primary care visit and surgery compared to children without OSA (224 days vs 244, $P < .001$). We dichotomized age into 2 groups: ≤6 years old and >6 years old. This age was chosen as it is near the mean age of the overall cohort (7.7 ± 4.16 years) and represents the beginning of the school-age range. Linear regression analysis adjusting for ethnicity and gender revealed no significant difference in days to PSG by age (93.4 vs 130.6 days; 95% CI = -19.2 to 99.9; $P = .182$). Cox regression adjusting for age, gender, and race or ethnicity comparing K-M curves of days from initial primary care visit to surgery by receipt of PSG and OSA severity revealed no significant difference in time to treatment ($P = .148$, $P = .483$; Figures 2 and 3).

Table 2. Multivariate Analysis for Predictors of Loss to Follow-up.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.06 (0.99-1.14)</td>
<td>.112</td>
</tr>
<tr>
<td>Black race</td>
<td>1.99 (0.94-4.20)</td>
<td>.072</td>
</tr>
<tr>
<td>Gender</td>
<td>1.13 (0.62-2.05)</td>
<td>.688</td>
</tr>
<tr>
<td>Referred to otolaryngology or pulmonology</td>
<td>0.36 (0.17-0.77)</td>
<td>.009</td>
</tr>
<tr>
<td>Referred to polysomnography</td>
<td>2.26 (0.97-5.28)</td>
<td>.060</td>
</tr>
<tr>
<td>Referred to both</td>
<td>2.73(1.29-5.78)</td>
<td>.009</td>
</tr>
</tbody>
</table>

Table 3. Time Intervals to Diagnosis and Treatment.

<table>
<thead>
<tr>
<th></th>
<th>Days PCP to PSG (n = 79)</th>
<th>Days PCP to Surgery (n = 46)</th>
<th>Days PSG to Surgery (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (Range; Median)</td>
<td>Mean ± SD (Range; Median)</td>
<td>Mean ± SD (Range; Median)</td>
</tr>
<tr>
<td>Black</td>
<td>36 (9-203; 171)</td>
<td>36 (9-203; 171)</td>
<td>36 (9-203; 171)</td>
</tr>
<tr>
<td>Other</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
<tr>
<td>Obese</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
<tr>
<td>Nonobese</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
<tr>
<td>Black</td>
<td>36 (9-203; 171)</td>
<td>36 (9-203; 171)</td>
<td>36 (9-203; 171)</td>
</tr>
<tr>
<td>Other</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
<tr>
<td>Obese</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
<tr>
<td>Nonobese</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
<td>38 (11-274; 129)</td>
</tr>
</tbody>
</table>

Discussion

To our knowledge, this is the first study to assess the success of obtaining follow-up and timing to treatment for primarily low-income children with SDB referred from primary care and to evaluate the impact of clinical parameters on these outcome measures. In addition, no study has followed the continuum of care for low-income children with SDB from the point of primary care referral to surgical treatment. A noteworthy finding was that half of the children referred for PSG, subspecialty SDB care, or both were lost to follow-up. The high rate of loss to follow-up may illustrate a high prevalence of undiagnosed or untreated OSA in this low-income population. Untreated OSA can affect growth and development and contribute to behavior problems, cardiopulmonary disease, and poor school performance. Children with low socioeconomic status are already at increased risk for these comorbidities, and
untreated SDB or OSA may exaggerate these adverse effects and further affect quality of life. Therefore, understanding social determinants that affect receipt of care and finding ways to facilitate timely diagnosis and treatment are imperative to improve quality of care for children with low socioeconomic status.

All children in this primarily low-income population experienced prolonged time intervals from point of primary care referral to PSG and surgery. This finding is similar to findings in previous publications that showed longer time intervals to surgery for SDB, epilepsy surgery, and cleft lip repair for children with public insurance.26,34,35 While there are no established acceptable wait times for pediatric elective surgery in the United States, the Canadian Wait Time Alliance has established benchmarks of surgery within 3 months for children with OSA and surgery within 3 weeks for children with severe OSA.36 Because of the differences in health care systems between the United States and Canada, these benchmarks may not be applicable but may serve as a starting point to establishing wait time targets in the United States. The long intervals between initial primary care visit, PSG, and surgery in this population may be due to poor access to subspecialty care, cultural perceptions of sleep, and/or functional limitations. Findings show an opportunity for health system quality improvement, as there is currently no system at this institution to remind patients to schedule referral appointments. Also, the children diagnosed with OSA underwent PSG in order to obtain the diagnosis. The process of scheduling and obtaining PSG likely accounts for the longer time interval to surgery. Of note, we have data on PSG and surgery date only for the patients who followed-up.

Previous studies have shown that children with low socioeconomic status have longer wait times to outpatient subspecialty care and may have less access to otolaryngology surgical services in particular.12-18,37 Children with low socioeconomic status often have public insurance, and reimbursement concerns may affect physicians’ willingness and ability to deliver timely care.38 Therefore, future efforts to eliminate socioeconomic disparities in SDB healthcare may also focus on improving or equalizing insurance policy and reimbursement.

There was a higher likelihood of being lost to follow-up for children referred to both PSG and subspecialty evaluation, while children referred for subspecialty evaluation alone were less likely to be lost to follow-up. The American Academy of Otolaryngology—Head and Neck Surgery Foundation (AAO-HNSF) guidelines recommend obtaining PSG prior to tonsillectomy only for a select group of children.32 However, there is wide variation in PSG referral patterns among primary care providers. Possible reasons for this finding may be due to differences in guidelines recommended by the AAO-HNSF and the American Academy of Pediatrics, with the latter recommending PSG be performed in any child with snoring and symptoms or signs of OSA.39 The high rate of loss to follow-up after PSG referral may be due to social or cultural factors that limit likelihood to obtain PSG, such as burden of time, cost, missed school or work, or a combination of these. Children referred to otolaryngology were also less likely to be lost to follow-up compared with referral to pulmonology. This may be due to parents considering a referral to a surgeon as a more proactive approach. This pattern will again be examined in a qualitative study examining barriers and facilitators in obtaining pediatric SDB care. Direct referral to sleep subspecialty evaluation without first referring to PSG from primary care may increase the likelihood of obtaining treatment for children with social or cultural barriers to care.

Primary care providers and sleep subspecialists may consider a focused shared decision-making model on choosing PSG or going directly to surgery. Social factors may be a barrier to obtaining PSG in urban populations, so providers may need to make this a specific focus of shared decision making in urban populations.

One of our most important findings was that the success of obtaining follow-up and the timeliness of treatment were not influenced by OSA severity, in contrast to our
expectations that children with more severe disease would be more likely to follow-up for quicker treatment. This finding may indicate that social determinants such as caregiver educational level, social support system, and economic stability may play a large role in loss to follow-up. A 2011 survey of physicians by the Robert Wood Johnson foundation showed that while most physicians are aware of the link between social conditions and poor health outcomes, they are unable to intervene to improve health care. Considering how social factors may influence patients’ or families’ ability to adhere to treatment recommendations could be the first step in improving quality of care. Because of the nature of the administrative data used for this analysis, we are unable to determine the role patient or family preferences played in the decision making to pursue scheduling appointments and treatment. A subsequent qualitative study is under way to understand how patient or family preference and other social or cultural factors influence treatment decisions for families of children with SDB.

There were several limitations. This study utilized a retrospective analysis using electronic health records, which may have coding errors or data entry inaccuracies and is subject to incorrect data abstraction. In addition, by using only administrative data, we were unable to identify other systemic and cultural factors for prolonged time to care or loss to follow-up. Furthermore, this analysis did not assess specific practice patterns or decision-making algorithms of providers. Therefore, we are unable to explain why children with normal PSGs underwent adenotonsillectomy. Severity of comorbid symptoms or presence of chronic adenotonsillectomy may be some reasons. It is also possible that some referrals were missed. We are also unable to determine how disease severity or perception of disease severity by parents or caregivers affected timeliness of care or loss to follow-up. It is a single-institution study and may not be generalizable on a national level. The low number of privately insured children did not allow adequate power for statistical comparison by insurance type. The low number of children who both obtained PSG and underwent surgical intervention did not allow adequate power for a statistically significant comparison of time to surgery by PSG receipt. The use of insurance type as a proxy for socioeconomic status may not be the most reliable measure. Socioeconomic status has many domains that cannot be captured by one measure. Insurance status was chosen as proxy for socioeconomic status given that it is readily available using electronic health record data. However, there is substantial unmeasured confounding when using only 1 measure.

The Johns Hopkins Children’s Center offers primary health care services to the community in East Baltimore. The East Baltimore community has a population that is 70% black, with 34% of the population below poverty level. In addition, inner-city children are more likely to live in poverty. This is reflected in the demographics of the study cohort; therefore, these findings may apply to other large urban areas but may not be generalizable on a national level. Although the payer mix is variable, albeit predominantly publicly insured, the children in these urban environments are exposed to the same social and environmental determinants that may influence care seeking or evaluation. Therefore, we chose not to exclude commercially insured patients in order to prevent selection bias. We instead mirror other large cohort studies and focus on description and analysis for an urban cohort. Further qualitative studies may be needed to identify patient- or family-specific reasons for loss to follow-up or other systemic and cultural factors that may be barriers limiting access to care and health care utilization. A subsequent study is under way using broader, more diverse data to make more reliable comparisons by race and insurance.

Despite these limitations, this study is the first to follow the continuum of care for children with SDB from the point of primary care referral. As more emphasis is placed on eliminating health disparities, examining referral patterns and health care utilization in low-income settings can aid in designing interventions to reduce care variation for SDB. Findings from this study will serve as a foundation for further research dedicated to equitable and efficient care for children with SDB.

Conclusions

In this urban health system, half of all children referred for evaluation or management of SDB do not complete the recommended referrals. All children experienced long time intervals to PSG and surgery. Disease severity did not influence likelihood to follow-up, implying that clinical disease is not a predictor of receipt of treatment. These findings suggest the need for further evaluation of social and cultural barriers to the diagnosis of pediatric SDB. Assessing referral patterns and access within the health care system for these at-risk children and developing tailored communication approaches based on socioeconomic status may aid in reducing care variation for this prevalent condition.

Author Contributions

Vandra C. Harris, acquisition, design, analysis, interpretation, drafting or revising work, ensuring accuracy or integrity of work, final approval or agreement; Anne R. Links, acquisition, design, interpretation, drafting or revising work, ensuring accuracy or integrity of work, final approval or agreement; Julia M. Kim, drafting or revising work, ensuring accuracy or integrity of work, final approval or agreement; Jonathan Walsh, drafting or revising work, ensuring accuracy or integrity of work, final approval or agreement; David E. Tunkel, drafting or revising work, ensuring accuracy or integrity of work, final approval or agreement; Emily F. Boss, conception, analysis, interpretation, revising work, drafting or revising work, final approval or agreement.

Disclosures

Competing interests: None.

Sponsorships: None.

Funding source: Dr Harris is supported by grant 512808 from the American Academy of Otolaryngology—Head & Neck Surgery Resident Research Award sponsored by Cook Medical and grant
5T32DC000027-27 from the National Institute on Deafness and Other Communication Disorders (NIDCD) for research Training in Otolaryngology. Dr. Boss is supported by grant K08HS022932 from the Agency for Healthcare Research and Quality.

References

