Development and Evaluation of Rhinoplasty Spreader Graft Suture Simulator for Novice Surgeons

Connie J. Oh, BS; Prem B. Tripathi, MD, MPH; Jeffrey T. Gu, MS; Pamela Borden, BS; Brian J-F. Wong, MD, PhD

Objective: Surgical simulators aimed at mimicking elements of rhinoplasty surgery, specifically those aimed at improving cartilage suturing, are not available. Here, we present a surgical simulator for spreader graft placement that uses cartilage rather than synthetic materials and gauge improvement using objective measures for suture placement accuracy, speed, and efficiency of hand motion.

Methods: Twenty-two otolaryngologists in two groups (residents [10] and experts [12]) were instructed to secure the two spreader graft specimen into position with three mattress sutures on a nose model that used porcine septal cartilage as a proxy for the human counterpart. Hand motion was tracked using an electromagnetic position sensing device. The time required to complete the suture task, total hand displacement, cumulative number of hand motion direction changes, and accuracy of suture insertion were measured. These measurements were compared between the two cohort groups for construct validity. The subjects completed a survey to evaluate realism and value of the model.

Results: The expert group had a lower mean time required to complete the task ($P < 0.05$), total hand displacement ($P < 0.01$), and number of hand motion direction changes ($P < 0.001$). No significant difference was observed between the two groups in suture precision measurement. The subjects agreed on the face validity and usefulness of the trainer.

Conclusions: Our study suggests that the simulator may be a useful tool to objectively gauge suturing efficiency. Devices such as this may be useful for developing skill with suturing cartilage tissue and potentially be used to assess resident acquisition of surgical skill.

Key Words: Rhinoplasty, nasal reconstruction, spreader graft, simulator, electromagnetic tracker.

Level of Evidence: NA

INTRODUCTION

Surgical simulators aimed at training young surgeons to perform complex tasks have been extensively utilized and their outcomes rigorously evaluated, providing a path for national certification examinations that assess skill sets based upon dexterity.1–3 Although high-fidelity simulators that allow a full surgical procedure to be performed are exciting, simulators that facilitate a variety of task-specific maneuvers may allow the evaluation of surgical skills over time. The need for instructional surgical simulation is readily apparent because federally mandated duty hours potentially limit surgical exposure and subsequently the loss of opportunities of autonomous operations.4 Likewise, with resident surgical skill evaluation it is now incumbent upon the training programs to objectively evaluate surgical skill, and because rhinoplasty is inherently cosmetic, true teaching opportunities may be too few to provide adequate experience.

In otolaryngology, surgical simulation has naturally favored endoscopic sinus surgery and temporal bone surgery.5–8 These are operations that traditionally have limited surgical exposure and often allow only one surgeon to perform the task, making teaching challenging.9 Novice and expert surgeons alike have reported that the use of these simulators and cadaver dissections facilitate the acquisition of surgical skills. Similarly, rhinoplasty operations provide limited exposure in a narrow operative field, which may preclude ideal visualization of surgical maneuvers. In comparison to traditional methods in which novices acquire surgical skills by initially assisting and subsequently operating on patients, the narrow margin for error and the technical precision in cosmetic surgery require trainees to acquire additional practice. Access to appropriate patients suitable for residents to perform elements of the operation is yet another limitation because most cosmetic surgery patients are operated on by an attending, with a fellow in assistance. Suturing cartilage is unique to facial plastic surgery, and the skills required to handle these tissues differ from what is potentially developed in soft tissue operations. Although practice modalities for rhinoplasty have been studied, no model has focused on...
emulating open graft-specific placement using material that resembles septal cartilage in a human nose.10,11

To validate the effectiveness of training models for surgery,12–19 precision and accuracy of suture placement have been used as a method to measure and compare the skill of residents and experts objectively.20,21 More recently, hand motion has been objectively tracked using either optical or electromagnetic devices in laparoscopic, robotic, and open surgery, and also for assessment of IV insertion and sonography procedures.14–16,19 Efficiency and economy of motion quantified by task completion time, path length, and number of movements/direction changes correlated with the level of expertise.15,18,19,22,23

The aim of this study was to evaluate a surgical trainer that mimics spreader graft placement using fresh porcine cartilage tissue and electromagnetic motion tracking as objective outcome measures. We compared residents’ and expert rhinoplasty surgeon performances for reliability and construct validity. Following evaluation, face validity and content validity of the spreader graft model were assessed to evaluate the effectiveness of the model as a training tool.

MATERIALS AND METHODS

Subjects

A total of 10 otolaryngology residents at our academic institution (postgraduate years 1–5) and 12 practicing facial plastic surgeons with significant rhinoplasty experience (>10 years) from multiple institutions completed the given tasks on the trainer and completed the survey.

Nasal Model

Porcine costal cartilages were obtained from a local abattoir. One large cartilage graft (2 × 15 × 25 mm) mimicking the quadrangular cartilage and two cartilage grafts used as spreaders (2 × 5 × 20 mm) were prepared using a costal cartilage graft-sectioning device.24 The dimensions of the spreader grafts were obtained by averaging spreader graft dimensions of 30 consecutive rhinoplasty patients previously operated on by the senior author (BJ Wong). On the lateral face of the cartilage grafts, three pairs of ink dots were marked 4 mm apart from each other, with each pair placed 2 mm from each other (Fig. 1). This provided a framework for suture placement.

To simulate performing spreader graft procedure on a patient, a jig was printed three-dimensionally to emulate the patient, a jig was printed three-dimensionally to emulate the nasal model as a training tool.

Data Collection

Suture and Tie Tasks. The task was segmented into two types of skills for assessment: suture and tie. Suture task was defined as inserting the curved suture needle through the three layers of cartilages (1 quadrangular cartilage and 2 spreader graft cartilages). The suture task was followed by a tie task, which was defined as completing one surgeon’s knot proceeded by four single knots. Each subject performed three suture tasks and three tie tasks.

In the suture assessment, the subjects were required to pass a curved needle through the cartilage graft-septum complex such that the pathway was perpendicular to the plane of the cartilage and did not drift caudally or cephalically. Ideally, the needle entered and exited at the same level and distance from the anterior edge of the septal cartilage on the opposite side. In addition, the subject was required to insert the needles as close as possible to the premarked dots (Fig. 1). An assistant cut the suture when directed by the subject. 5-0 PDS II violet monofilament suture (Ethicon, Cincinnati, OH) was used for all suturing. During the entirety of the task, a digital video camera mounted above the subject and recorded the procedure.

Tracking Hand Movements With Electromagnetic Tracker. trakSTAR (Ascension Technology, Shelburne, VT), a real-time position tracking system with 6 degrees of freedom sensors, was used to measure the xyz coordinates of the hand location in mm relative to time (Fig. 3). trakSTAR (Ascension Technology) is an electromagnetic tracking unit that utilizes pulsed direct-current magnetic fields to track position of the attached sensors. The trakSTAR sensors (Ascension Technology) was secured to the back of the subject’s dominant hand. Time taken to complete the task and position data from the trakSTAR device (Ascension Technology) was recorded starting from when the subject initiated sutturing to when the subject made the last tie.

Questionnaire. After the completion of the tasks, the subjects completed a questionnaire to rate content validity and usefulness of the training model (Table I). Question 1 rated the availability of current practice modalities for rhinoplasty. A score of 1 indicated that sufficient modes of practice were available, whereas a score of 5 indicated that insufficient modes of practice were currently available. Questions 2 and 3 rated the face validity of the spreader graft model, with 1 indicating that the model reflected an actual spreader graft procedure and 5 indicating that it was nothing like an actual spreader graft procedure. Questions 4 and 5 rated the content validity, with 1 indicating that the spreader graft model was useful for training and 5 indicating that it was not useful. The questions are listed in Table II.

Data Analysis

Four task-specific modes of evaluations were completed to assess time, efficiency, and accuracy: 1) total time taken to...
complete the given task, 2) path length traveled by the hand in completing the task, 3) number of hand movement made in completing the task, 4) accuracy of needle insertion.

Total Time Taken to Complete Task. The time taken to complete the task was averaged for the resident and the expert groups, and Student t test was performed.

Path Length Traveled. Using the recorded video, the time intervals during which each suture and tie was performed were defined. These time intervals were correlated with the time data collected by trakSTAR (Ascension Technology), from which the corresponding position data for each suture and tie were defined. Next, the position data was used in the algorithms implemented in Matlab version 9.1 was used (MathWorks, Natick, MA) to calculate the total path length traveled (mm) for each suture and tie task. The mean of the three suture tasks and three tie tasks were calculated for each subject. Subsequently, the mean of the path length of the subjects in corresponding resident and expert groups were calculated. Student t tests were performed between the resident and expert group.

Number of Hand Movements. Discrete movements were defined as detected change in velocity greater than 15 mm/s. Using MatLab algorithms, the change in velocity at each recorded time was calculated. The number of occurrences when the change in velocity was greater than 15 mm/s were calculated for each suture and tie task. Similar to the analysis of the path length that was traveled, the means were obtained for the resident and expert group, and the Student t test was performed.

Accuracy of Needle Insertion. To estimate suture placement accuracy, the sutured cartilage was removed from the jig, placed adjacent to a ruler, and photographed from both sides. The distance from the actual suture insertion site to the center of the target mark was measured for each of the six target markings using image-processing software (ImageJ, National Institutes of Health, Bethesda, MD).

RESULTS

The experts performed the task in significantly less time (mean 254 s) than the residents (mean 312 s).
TABLE I
Suture Precision Measurements.

<table>
<thead>
<tr>
<th>Left Face</th>
<th>Residents (SD) n = 10</th>
<th>Experts (SD) n = 12</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Face</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photographs of the cartilage with grafts sutured by subjects were used to measure the distance between the suture insertion point and the midpoint of premarked dot. SD = standard deviation.

(P < 0.05) (Fig. 4A). The experts had significantly less path length traveled for both suture task (4,206.2 mm experts, 6,708.6 mm residents, P < 0.001) and tie task (2,004.3 mm, 2,958.3 mm residents, P < 0.01) (Fig. 4B). The experts had significantly less hand movements made for both suture task (192.6 experts, 334.8 residents, P < 0.001) and tie task (108.6 experts, 195.4 residents, P < 0.001) (Fig. 4C).

A greater difference was observed in the path length and number of hand movements between the expert and resident groups during the suture task than during the tie task. In addition, a greater standard deviation in all the parameters was observed in the resident group than in the expert group.

The precision of suture insertion into the cartilage is illustrated in Table I. Although the mean of distance from the suture insertion site to the center of the marked dot was smaller for the expert group than the resident group, the difference was not significant.

Table II shows the results of the validation questionnaire. Both the resident group and the expert group agreed about: 1) the current lack of opportunities to develop spreader graft skill (question 1), 2) the face validity of the model (questions 2 and 3), 3) the usefulness of the model for training (questions 4 and 5), 4) the increase in confidence of the surgeon after using the model (question 4), and 5) the recommendation of the model for any otolaryngology resident to improve skill with this maneuver (question 5).

DISCUSSION

Precision suture placement in cartilage is a challenging task and a skill that requires years to acquire precision and accuracy. Cartilage is an unforgiving tissue, unlike soft tissues from which the surgical skill set of the vast majority of head and neck surgeons is derived. Cartilage can be inadvertently damaged by multiple attempts at needle passage or by the aggressive use of forceps. Torque produced by angular placement of the needle when a straight perpendicular trajectory is required may result in compromised cosmetic outcomes. Unfortunately, skill acquisition in rhinoplasty for otolaryngology residents in rhinoplasty is limited. Recently, it has been reported that that the average otolaryngology resident only performs 25 rhinoplasty operations. Plastic surgery residents perform an order of magnitude fewer. This is amplified by changes in surgical training imposed by duty-hour restrictions.

It should come as no surprise that experienced rhinoplasty surgeons needed less time and made fewer hand movements than residents. Figure 4A shows that the experienced group had a significantly faster task completion time than the resident group. The total time taken to complete the task is a reflection of the efficiency of the surgeon and has been shown in similar studies to have a strong correlation with expertise level. Although the difference in the time taken to complete the task may be statistically significant, the difference of approximately 1 minute may not have clinical significance and therefore may not result in overly increased operative time when a resident is included in the operative case. Nevertheless, the time required to perform several maneuvers during primary and revision cases, as well as the relative complexity of spreader grafts compared to other grafting techniques, may amount to a clinically significant finding. In addition, it was demonstrated that the total path length traveled and the number of movements in both suture and tie task were significantly less in the expert group compared to the resident group. The economy of motion improves in the experienced hands along with the subjective progress in aptitude. This corresponds with the results found in studies using laparoscopic surgery, robotic surgery, and other open surgeries.

For both total path length traveled and the number of hand movements, a greater significance was observed in the suture task than in the tie task. This may be due to the complexity of the suture task in comparison to the tie task. Because medical student suturing skills labs frequently focus on soft tissue suturing as opposed to

TABLE II
Questionnaire Results Providing Face and Content Validity of the Spreader Graft Model.

<table>
<thead>
<tr>
<th>Question</th>
<th>Residents (n = 10)</th>
<th>Experts (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sufficient modes of practice are currently available to practice securing spreader grafts.</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>2. Securing the spreader grafts on the simulator closely reflected suturing of a spreader graft on an actual patient.</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>3. I feel that I can accurately demonstrate my skill in securing spreader grafts with the simulator.</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>4. Practicing on the simulator would increase the confidence level of a resident in suturing cartilage on an actual patient.</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>5. The cartilage graft suturing model should be recommended for any otolaryngology residents to improve his/her skill.</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1 indicates that the participant strongly agrees; 5 indicates that the participant strongly disagrees.
cartilage, most novice surgeons may be unfamiliar with suturing through the complex cartilage structure. Meanwhile, the knot-tying task is comparable in both the cartilage model and in the soft tissue model in overall technique. In addition, when placing the sutures, the surgeon must be astute to the potential damage that cartilage may sustain following repetitive suture attempts. Lastly, overly aggressive tension created during suturing may cause the suture to cheesewire through the tissue, a known issue that disrupts the integrity of the graft.

No significant difference was observed between the residents and the experts in the accuracy measurement. In actual rhinoplasty surgeries, cartilages are not regularly premarked with dots, and surgeons make sutures in areas based on the needs of the situation. The markings used for standardization may have created an artifact for expert surgeons, explaining the lack of difference in accuracy between the residents and experts. Additionally, several expert surgeons generally utilize a straight needle for this procedure and not a curved one as given in this study. Nevertheless, the premarked dots on the cartilages may allow residents to practice and improve the accuracy of needle insertion because the task of passing a curved needle through three layers of cartilage in a straight manner may be difficult for the novice. Furthermore, it provides an objective mean to measure the accuracy by setting a target. Not having a target would complicate the task because each operator has a varying sense of what is ideal.

In addition, the resident group was generally younger than the expert group, which may have led to the decline in precise needle insertion by experts. The increase in hand tremor and loss of vision correlated with aging may have led the older expert group to insert the sutures with less precision. Furthermore, many of the expert surgeons recruited usually wear loupes while performing these procedures. The decline in visual acuity for subjects over 40 years of age is pronounced due to the lack of a magnification device such as a loupe. Although the markings were created as the ideal point for suture entry, we did not analyze whether the position correlated with proper placement of the spreader grafts as a whole.

In designing the study, we decided to omit the process of cutting the spreader graft and provided standardized grafts prepared using a cartilage sectioning device to avoid introducing misclassification bias of varying cartilage thickness that may affect the outcome of economy of motion during suturing. As for the pinning process of the cartilages, although it was not analyzed in our study, the authors acknowledge the importance of mastering graft placement prior to suturing and will include this in future skill-acquisition analysis. In addition, although we were unable to compare the differences in skill level between residents with varying years of experience due to the small sample size, a future study with larger multi-institutional group or one that analyzes residents of different levels (i.e., at a national meeting) would add further dimension to our study.

Whereas electromagnetic tracker unit may be sensitive to metal objects that can potentially distort the magnetic field, it was utilized in this study to track the hands of the subjects due to its ease of availability and allowance for fluidity of movement. Other tracking systems such as the optical tracking unit requires the target to be in the sight of the tracking system, which may limit the movement of the surgeon due to the need to be aware that both hands are in the field of vision. In contrast, electromagnetic tracker does not require that a...
direct line of sight be maintained, which allows for a flu-
idity of movement that mimics a real surgery.

On the whole, there is a general consensus from par-
ticipants that sufficient models for practicing this tech-
nique are not readily available, and that our system
would be useful and thus should be recommended for res-
ident training. The questionnaire results suggest that the
spreader graft model is a plausible training modality for
residents.

Several limitations exist with this study. Although our
survey participants agreed that this model accurately
reflected in vivo suturing, there are clear differences
between suturing porcine costal cartilage on a practice
model and human septal cartilage with respect to their
biomechanical properties. Nevertheless, the triphasic
properties of costal cartilage mimic a nasal cartilage
closer than an artificial material such as rubber or elasto-
mer. Secondly, the participants were given a wide expo-
sure with the model, one not afforded to the surgeon
constrained by a limited surgical field and overlying skin/
soft tissue envelope. Nonetheless, the wide exposure of
the cartilage may allow novice surgeons who are working
with cartilage for the first time to have a visual orienta-
tion of the procedure. Thirdly, generalizability of the sur-
vey remains a key limitation because the model is
designed to test one specific skill as opposed to broader
applicability that may be available in other surgical simu-
lations. Nevertheless, an overwhelming majority of par-
ticipants agreed that residents would benefit from this
model despite the potential limitations. Lastly, our study
is inherently limited by the use of one rhinoplasty graft-
ing technique in an artificial model. The purpose of this
design was to determine whether 1) grafting techniques
could be quantitatively assessed, and 2) whether there
was consensus on the need for such a device. In the
future, we hope to perform studies using greater sample
size, measuring skill acquisition over time, and using
cadaveric tissue to further validate the model and provide
greater breadth of technique exposure.

Collectively, the spreader graft model has been dem-
strated to be a reasonable training model with objec-
tive assessment for residents, as evidenced by
statistically significant difference between the resident
and the expert groups. The standardized components of
this study allowed for objective assessment and compar-
ison of the subjects’ surgical performance. The uniform
sizes of the grafts, the availability of the markings, the
use of same lighting, and the use of same equipment
allowed the participants to be evaluated under similar
conditions. The standardization also allows for future
study of the advancement of the surgeon’s skills
over time.

CONCLUSION

The rhinoplasty simulator is a novel objective plat-
form that allows surgeons to practice on cartilage rather
than artificial materials. Efficiency of hand movement
evaluated by the rhinoplasty simulator is associated
with surgeon skill level, suggesting that the simulator
may be a useful tool to objectively assess and train
surgeons. In alignment with participant feedback, our
device may be useful for developing skill with suturing
cartilage and may be valuable when used as an objective
measure to assess resident acquisition of surgical skill.

Acknowledgment

We gratefully acknowledge Dr. Joseph Jing for research
support through guidance in the use of Ascension
trakSTAR electromagnetic tracker (Ascension Technology).

BIBLIOGRAPHY

rosopic surgery: a surgical skills assessment tool in gynecology. JSLS

2. Pandey VA, Wolfe JHN, Lindahl AK, Rauwerda JA, Berquist D. Validity of
an exam assessment in surgical skill: EBOS-VASC pilot study. Eur J

3. Moore EJ, Price DL, Abel KM Van, Carlson ML. Still under the microscope:
can a surgical aptitude test predict otolaryngology resident performance?

4. Danodi A, Davis AT, Saxe A, Apelgren K. ACGME-duty-hour restrictions
decrease resident operative volume: a 5-year comparison at an
2018;64:256–259.

5. Fried MP, Sadoboughi B, Gibber MJ, et al. From virtual reality to the operat-
ing room: the endoscopic sinus surgery simulator experiment. Otolaryngol

6. Okada DM, Maria A, Sousa A D, Huertas RDA, Suzuki FA. Surgical simula-
tor for temporal bone dissection training. Braz J Otorhinolaryngol 2010;
76:575–578.

7. Gallagher A, Fried MP. Assessment of construct validity of the endoscopic

8. Rose AS, Kimbell JS, Webster CE, Harrysson OLA, Forrister Ed, Buchman CA. Multi-material 3D models for temporal bone surgical simu-

sopic sinus surgery (MSESS): a validation study. J Otolaryngol Head

10. Coan BS, Neff E, Mukundan SJ, Marcus JR. Validation of a cadaveric model
for comprehensive physiologic and anatomic evaluation of rhinoplastic

Teaching suturing and knot-tying skills to medical students: a random-
ized controlled study comparing computer-based video instruction and

14. Lin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation:
detection and segmentation of robot-assisted surgical motions. Comput

15. Datta V, Mackay S, Mandalia M, Darzi A. The use of electromagnetic
motion tracking analysis to objectively measure open surgical skill in the

open procedures using video-based motion analysis. Surgery 2014;156:
703–707.

17. Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of

ing surgical dexterity during corneal suturing. Arch Ophthalmol 2006;

an objective assessment tool for the Focused Assessment with Sonography

20. Frischknecht AC, Kasten SJ, Hamstra SJ, et al. The objective assessment of
experts’ and novices’ suturing skills using an image analysis program.

with virtual reality simulation versus dry lab practice: an evaluation of perfor-

22. Chin KJ, Tse C, Chan V, Tan JS, Lapu CM, Hayter M. Hand motion analy-
sis using the imperial college surgical assessment device: validation of a
novel device and objective performance measure in ultrasound-guided peripheral

23. Tausch TJ, Kowaleski TM, White LW, McDonough PS, Brand TC, Lendvay TS. Content and construct validation of a robotic surgery curricu-

24. Foulad A, Hamamoto A, Manuel C, Wong BJ. Precise and rapid costal car-
tilage graft sectioning using a novel device: clinical application. JAMA Facial

Laryngoscope 129: February 2019

Oh et al.: Development of Rhinoplasty Suture Simulator

349
34. Owsley C. Aging and vision. Mov Disord 2011;26:1610–1622.