Premiere Publications from
The Triological Society

Read all three of our prestigious publications, each offering high-quality content to keep you informed with the latest developments in the field.

THE LARYNGOSCOPE

Editor-in-Chief: Michael G. Stewart, MD, MPH

The leading source for information in head and neck disorders.

Laryngoscope.com

LARYNGOSCOPE INVESTIGATIVE OTOLARYNGOLOGY

Editor-in-Chief: D. Bradley Welling, MD, PhD, FACS

Rapid dissemination of the science and practice of otolaryngology-head and neck surgery.

InvestigativeOto.com

ENT TODAY

Editor-in-Chief: Alexander Chiu, MD

Must-have timely information that Otolaryngologist-head and neck surgeons can use in daily practice.

Enttoday.org
Predictors of Intratonsillar Versus Peritonsillar Abscess: A Case-Control Series

S. Ahmed Ali, MD; Kevin J. Kovatch, MD; Josh Smith, BS; Emily L. Bellile, MS; John E. Hanks, MD; Carl M. Truesdale, MD; Paul T. Hoff, MD

Objectives/Hypothesis: An uncommon phenomenon in relation to the peritonsillar abscess (PTA) is the intratonsillar abscess (ITA) or formation of an abscess within tonsillar parenchyma. This study sought to characterize our experience with diagnosis and management of ITAs in the context of the PTA patient population.

Study Design: Case-control series.

Methods: This is a single-institution retrospective review of patients treated at the University of Michigan between 2000 and 2017.

Results: Six hundred fifty-five adult patients were identified. The incidence of ITA within the PTA population was 7% (n = 43). Patients with ITA had lower mean white blood cell count (P = .03), lower proportion of trismus (P < .0001), otalgia (P = .007), vocal changes (P < .0001), and fewer incidences of acute progression of symptoms (P = .0007). On multivariable analysis, ITA patients were noted to be older, present with a longer duration of symptoms, and have greater incidence of neck pain and lymphadenopathy. Drainage was attempted in fewer ITA patients and was rarely successful (15%) in comparison to successful drainage for PTA patients (69%) (P < .0001).

Conclusions: Symptomatology differs for ITA, as fewer present with the classic PTA symptoms of otalgia, trismus, and voice alterations. The lack of classic symptoms likely leads to delayed presentation. A greater number of ITA patients presented with neck pain and lymphadenopathy. In the ITA population, aspiration attempts were more infrequent and less successful in yielding purulence. Given infrequent yield of pus and low overall recurrence rate, the diagnosing clinician should consider medical management in this distinct patient population.

Key Words: Peritonsillar abscess, intratonsillar abscess, otolaryngology.

Level of Evidence: 4

Laryngoscope, 129:1354–1359, 2019

INTRODUCTION

Peritonsillar abscess (PTA) is the most commonly occurring abscess in the head and neck region. There is an annual incidence of 30 cases per 100,000 inhabitants in the United States, or a total of approximately 45,000 cases per year.1 Anatomically, PTAs are characterized by purulent pockets located between the palatine tonsil capsule and the pharyngeal constrictor muscles. The symptomatology of PTAs has been well defined, and includes progressive odynophagia, unilateral otalgia, trismus, voice changes, and malodorous breath. Management typically involves antibiotics and evacuation of purulent fluid with needle aspiration and/or formal incision and drainage of the peritonsillar space.2 On occasion though, there is coalescence of abscessed material within the parenchyma of the tonsil itself; this uncommon phenomenon is known as the intratonsillar abscess (ITA).

The pathogenesis of the ITA has yet to be fully elucidated. One proposed mechanism involves direct extension of obstructed tonsillar crypts with subsequent enlargement and containment of the ITA. Another theory hypothesizes that ITA arises from bacterial seeding via either the bloodstream or the lymphatic system.3,4 PTA and ITA are similar entities, though with distinct clinical features. The importance of distinguishing these two disease processes lies in the possibility of differential management. Whereas aspiration and drainage is the well-studied gold standard in management of the PTA, there is little consensus regarding optimal management of the ITA.5 Previous case series have demonstrated treatment success without utilizing formal aspiration or incision and drainage.6 The lack of consensus is further compounded by few published studies on incidence of the

From the Department of Otolaryngology–Head and Neck Surgery, Michigan Medicine, Ann Arbor, Michigan, U.S.A.

Editor's Note: This Manuscript was accepted for publication on Month 0, 2018.

All of the authors have made substantial contributions to this project including contributions to conception and design, or acquisition of data, or analysis and interpretation of data. All authors were involved in drafting the manuscript or revising it critically for important intellectual content. All authors have given final approval of the manuscript as submitted for publication and take responsibility for content. The authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

K.J.K. is supported by National Institutes of Health grant T32 DC005356.

The authors have no other funding, financial relationships, or conflicts of interest to disclose.

Send correspondence to S. Ahmed Ali, MD, Department of Otolaryngology–Head and Neck Surgery, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48104. E-mail: ahmedali@med.umich.edu

DOI: 10.1002/lary.27615
ITA, likely resulting in poor provider recognition of this disease process. This diminished awareness could result in providers managing the ITA as they would the PTA, that is with drainage of the peritonsillar space. Given the anatomic differences in these abscesses, this practice may contribute to a proportion of failed PTA drainage attempts. Separate studies have demonstrated specificity ranging from 50% to 70% when attempting to aspirate purulence in PTA patients.7–9 Thus, it is the authors’ hypothesis that the ITA is a clinically distinguishable entity from the PTA, with a treatment paradigm that should differ in regard to aspiration and drainage of the peritonsillar space. This study aimed to prove this hypothesis via establishing the measures of differential incidence, presenting symptoms, risk factors, natural history, and treatment course and outcomes for ITA relative to the population of patients presenting for PTA.

MATERIALS AND METHODS

Study Population
This work is approved under institutional review board HUM00140714. We performed a single-institution, retrospective case series of patients who presented to our emergency department or clinic with suspicion for a deep neck-space infection. The patient list was compiled via a medical records search for peritonsillar abscesses and tonsillar abscesses via International Classification Diseases, Ninth Revision and Tenth Revision coding. Patients who were diagnosed with a peritonsillar or intratonsillar infection from 2000 to 2017 were included. Diagnostic criteria for diagnosing ITA included: radiologist confirmation of debris or abscess within tonsillar parenchyma or body, or evacuation of purulence from intratonsillar parenchyma or evacuation of purulence from intratonsillar parenchyma as noted in operative note for quinsy tonsillectomy. Patients who did not have a diagnosis of PTA or ITA, most commonly those diagnosed with pharyngitis or tonsillitis, were excluded from the study. Patients who had infections present within additional spaces of the neck, such as concomitant parapharyngeal or retropharyngeal abscesses, were also excluded. We collected the following data from the medical record: age, patient gender, vital signs, date of treatment, presenting symptoms, record of previous treatment, laboratory data, type and outcome of intervention performed, imaging characteristics, record of recurrence of PTA or ITA, culture data, and any follow-up visitation in the clinic. Data were collected using clinical notes and imaging available in our electronic medical records system.

RESULTS
Our study identified 655 adult patients (aged > 18 years) with confirmed diagnosis of PTA or ITA. Of these, 612 (93%) were diagnosed with PTA and 43 (7%) with ITA. Diagnostic criteria for ITA and PTA are outlined in Table I. ITA diagnosis was confirmed radiographically for all 43 patients. Demographics and basic clinical data are displayed in Table II. The vast majority of patients in either group were in the 19- to 30-year-old age range. The ITA population demonstrated a greater mean age, with an average mean of 32.3 years in comparison to 29.2 years for PTA patients ($P= .09$). There was a significantly greater proportion of patients in the 19- to 30-year-old cohort for PTA patients ($P= .03$). There was no appreciable difference in gender breakdown between the two groups.

A significant proportion of patients in either group (49% for PTA, 40% for ITA) were treated prior to their evaluation for a PTA or ITA; previous treatment attempts were quantified as prior antibiotic administration, steroid administration, or prior drainage attempt at a separate facility. A greater number of PTA patients were seen for scheduled follow-up in otolaryngology clinic (49% for PTA, 35% for ITA). Recurrence data were calculated based off of any charted incidences of return to the emergency department for repeat drainage attempt or quinsy tonsillectomy in a future encounter; 7% of ITA patients

<table>
<thead>
<tr>
<th>TABLE I. Diagnostic Criteria for PTA and ITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Criteria for PTA</td>
</tr>
<tr>
<td>Evacuation of purulence from peritonsillar space via bedside procedure; or</td>
</tr>
<tr>
<td>Evacuation of purulence from peritonsillar space as noted in operative note for quinsy tonsillectomy; or</td>
</tr>
<tr>
<td>Radiologist confirmation of debris or abscess material in the peritonsillar space; or</td>
</tr>
<tr>
<td>Clinical diagnosis of early peritonsillar abscess after failed evacuation attempt</td>
</tr>
</tbody>
</table>

ITA = intratonsillar abscess; PTA = peritonsillar abscess.
experienced documented recurrent abscess, in comparison to 15% of PTA patients.

Symptomatology data are displayed in Table III. PTA patients experienced symptoms at a mean of 6.4 days in comparison to 7.5 days for ITA patients ($P = .16$). A significantly greater proportion of PTA patients (71%) experienced acute progression of symptoms resulting in hospital visitation than ITA patients (49%) ($P < .001$). Likewise, a significantly greater proportion of PTA patients experienced otalgia (59% vs. 21%, $P < .001$), and vocal changes (59% vs. 28%, $P < .001$). The only symptom found to be significantly more prevalent in ITA patients was neck pain (35% vs. 16%, $P = .002$).

Objective laboratory data obtained included white blood cell count, rapid strep testing, rapid Epstein-Barr virus (EBV) testing, and culture data when collected (Table IV). PTA patients had significantly higher mean white blood cell count than ITA patients, 13.7 in comparison to 12.1 ($P = .03$). ITA patients were more likely to demonstrate normal white blood cell count (45% vs. 25%) ($P = .008$). Rapid EBV testing was positive in 16% in both groups when performed, and rapid strep testing positivity was low in both groups as well (16% for PTA, 6% for ITA). Bedside aspiration was attempted in a far greater proportion of PTA patients (92%) than ITA patients (63%). When attempted, drainage was successful in a significantly greater proportion of PTA patients (69% vs. 15%) than ITA patients ($P < .001$). Patient-inclusions flowsheet and outcomes are outlined in Figure 1.

Multivariable analysis indicates that progression of symptoms, trismus, and voice changes are associated with a higher likelihood of PTA (Table V). Older age, longer duration of symptoms, neck pain, and presence of lymphadenopathy were associated with a higher likelihood of ITA.
DISCUSSION

In this case-control study of ITA, we found that these patients were less likely to present with otalgia, trismus, and vocal changes; these symptoms can be predictive of the ITA disease process and harbor important connotations for appropriate management. The study further aimed to discern the true incidence of ITAs within the PTA population. From the 655 adult patients with diagnosed PTA from this retrospective case series, 43 (7%) had radiographically diagnosed ITA. An example of a patient with radiographically diagnosed ITA is presented in Figure 2. This is an important contribution to the literature, as current studies describing ITAs are largely case reports or series driven. Due to a multitude of factors including lack of established distinguishing characteristics, low clinical suspicion in managing physicians, and lack of imaging on all potential patients, the true incidence of the ITA has thus far been difficult to ascertain. In a retrospective study of 52 patients who underwent tonsillectomy for PTA, the authors identified evidence of areas of neutrophils or necrotic debris in seven patients, lending evidence toward the presence of an ITA. Even in this large retrospective review, our incidence of 7% likely represents the minimum value. Given that our diagnostic criteria were based off of radiographic evidence, that only 32% of patients received computed tomography imaging means that some portion of the ITAs went undiagnosed.

The intersection between tonsillitis, ITA, PTAs, and combined abscesses can be discussed in relation to the symptomatology of these infections. Although not compared to a baseline PTA population, previous case series have demonstrated that ITA patients presented with lower-than-expected rates of muffled voice and trismus, in addition to high rates of sore throat, fever, and odynophagia. These findings were confirmed in our study, as ITA patients had significantly lower rates of trismus, otalgia, and vocal changes (Table III). A distinct finding in this study was that fewer ITA patients experienced

Table IV. Lab and Treatment Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall, No. = 655 (100%)</th>
<th>PTA, No. = 612 (93%)</th>
<th>ITA, No. = 43 (6.6%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC, mean/median, n = 497</td>
<td>13.7/13.2</td>
<td>13.8/13.2</td>
<td>12.1/12.0</td>
<td>.03</td>
</tr>
<tr>
<td>WBC, n = 497, no. (%)</td>
<td></td>
<td></td>
<td></td>
<td>.008</td>
</tr>
<tr>
<td>Normal (<11.0)</td>
<td>132 (27)</td>
<td>115 (25)</td>
<td>17 (45)</td>
<td></td>
</tr>
<tr>
<td>Elevated (≥11.0)</td>
<td>365 (73)</td>
<td>344 (75)</td>
<td>21 (55)</td>
<td></td>
</tr>
<tr>
<td>Mono, positive, n = 282, no. (%)</td>
<td>46 (16)</td>
<td>43 (16)</td>
<td>3 (16)</td>
<td>.95</td>
</tr>
<tr>
<td>Strep, positive, n = 451, no. (%)</td>
<td>74 (16)</td>
<td>72 (17)</td>
<td>2 (6)</td>
<td>.11</td>
</tr>
<tr>
<td>Attempted drainage, no. (%)</td>
<td>593 (91)</td>
<td>566 (92)</td>
<td>27 (63)</td>
<td><.0001</td>
</tr>
<tr>
<td>Successful drainage, n = 593, no. (%)</td>
<td>397 (67)</td>
<td>393 (69)</td>
<td>4 (15)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

ITA = intratonsillar abscess; PTA = peritonsillar abscess; WBC = white blood cells.

Table V. Multivariable Model of Probability for Intratonsillar Abscess Versus Peritonsillar Abscess

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19–30 years vs. 31–50 years</td>
<td>0.9</td>
<td>0.4-2.1</td>
</tr>
<tr>
<td>19–30 years vs. 51+ years</td>
<td>3.51</td>
<td>1.2-104</td>
</tr>
<tr>
<td>3 days or less vs. 4–7 days</td>
<td>1.3</td>
<td>0.6-3.1</td>
</tr>
<tr>
<td>3 days or less vs. > 7 days</td>
<td>3.4</td>
<td>1.3-8.6</td>
</tr>
<tr>
<td>Progression of symptoms</td>
<td>0.4</td>
<td>0.18-0.83</td>
</tr>
<tr>
<td>Trismus</td>
<td>0.2</td>
<td>0.09-0.45</td>
</tr>
<tr>
<td>Voice change</td>
<td>0.4</td>
<td>0.17-0.75</td>
</tr>
<tr>
<td>Neck pain</td>
<td>4.0</td>
<td>1.8-8.8</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>2.2</td>
<td>1.0-4.8</td>
</tr>
</tbody>
</table>

Fig. 1. Exclusions flowsheet and outcomes with aspiration and drainage. ITA = intratonsillar abscess; PTA = peritonsillar abscess; I&D = Incision and drainage. [Color figure can be viewed in the online issue, which is available at www.laryngoscope.com.]
progression of symptoms, defined in this study as acute worsening of symptomatology following initial onset of sore throat. Assuming the infection is isolated within the parenchyma of the tonsil, it stands to reason that it would not involve the masseteric space and result in trismus or involve the glossopharyngeal nerve and invoke otalgia. The ITA cases where patients did have trismus (21%) or otalgia (40%), could potentially be part of the continuum of PTA and ITA, where neutrophilic or necrotic debris penetrated the capsule and began involving the peritonsillar space proper. A distinguishing symptom for ITA appeared to be increased patient awareness and reporting of neck pain, which was distinguished from throat pain (35% vs. 16% for PTA). This may be related to patient identification of this symptom in the absence of other symptoms to focus on, such as vocal changes, otalgia, or trismus. Other distinguishing characteristics for the ITA, developed through multivariable analyses, included older patient age and lymphadenopathy. The greater prevalence of lymphadenopathy may be related to the finding of neck pain, as patients are aware of the presence of tender cervical lymph nodes. It stands to reason that the development of lymphadenopathy, and potentially associated neck pain, could be secondary to longer duration of symptoms prior to eventual presentation in ITA patients (7.5 days vs. 6.4 days).

The management of ITAs remains a subject of controversy and debate. Some studies advocate for simple needle aspiration without formal incision of the tonsillar parenchyma. A larger case series of 11 pediatric patients with ITA advocated for intravenous antibiotic therapy for those with isolated ITA, and procedural or surgical intervention for those with combination ITA and PTA infections. Determining appropriate management of these patients is challenging for numerous reasons. Given the signs and symptoms concerning an abscess, the majority of ITA patients (63%) did receive needle aspiration, although a small proportion of the attempts were successful in evacuating pus (15%). It is difficult to determine if the act of dissection of the peritonsillar space had any therapeutic effect, either for potentially allowing for a drainage pathway for the coalesced intratonsillar bacteria or for possibly preventing peritonsillar spread of infection. Furthermore, follow-up information is not reliable; recurrence data were calculated based off of any charted incidences of either return to the emergency department or telephone calls denoting persistent symptoms. With this information in mind, only 7% of ITA patients experienced documented recurrent abscess, in comparison to 15% of PTA patients. This may speak to the disease process responding well to medical therapy in the absence of evacuation of pus, although it is difficult to determine a conclusion with retrospective information. Only 35% of ITA patients had scheduled a follow-up to ensure resolution of infectious symptoms.

The limitations of this study are related to its retrospective nature. The diagnosis of ITA was based off of radiographic documentation of coalesced abscess or debris within the tonsillar parenchyma. The diagnosis of PTA was based off of radiographic confirmation or direct evacuation of purulence from the peritonsillar space; the remaining patients who had negative aspiration attempts and no imaging (n = 196) were classified as PTA based off of a clinic report and documentation. It is possible that a subset of these patients, had they received imaging, would have been determined to have an ITA. Despite this potential underreporting of ITA prevalence, the difference in symptomatology between the compared cohorts is large enough to demonstrate statistical significance.

CONCLUSION

Unlike the PTA, the symptomatology, examination findings, and treatment strategies for the ITA are not well elucidated. This unique process that sits at the crossroads between tonsillitis and PTA typically presents later than PTAs. It is identifiable via an overall clinical picture concerning an abscessed infection, but with a lack of the traditional otalgia, vocal changes, progressive symptoms, and trismus that affect patients with PTA as determined by multivariable analysis. Upon recognition of the intratonsillar abscess, the diagnosing physician should consider medical management, as attempted needle aspiration and/or incision drainage does not typically result in evacuation of purulence. Future prospective studies could further characterize optimal management in a randomized fashion.
BIBLIOGRAPHY

