Premiere Publications from The Triological Society

Read all three of our prestigious publications, each offering high-quality content to keep you informed with the latest developments in the field.

The Laryngoscope
Founded in 1896
Editor-in-Chief: Michael G. Stewart, MD, MPH
The leading source for information in head and neck disorders.
[The Laryngoscope](http://www.laryngoscope.com)

Investigative Otolaryngology
Open Access
Editor-in-Chief: D. Bradley Welling, MD, PhD, FACS
Rapid dissemination of the science and practice of otolaryngology-head and neck surgery.
[InvestigativeOto.com](http://www.investigativeoto.com)

ENTtoday
A publication of the Triological Society
Editor-in-Chief: Alexander Chiu, MD
Must-have timely information that Otolaryngologist-head and neck surgeons can use in daily practice.
[ENTtoday.org](http://www.enttoday.org)
Management of Difficult Airway Among Patients With Oropharyngeal Angioedema

Vinciya Pandian, PhD, MBA, MSN ©;* Gooi Zhen, MD;* Stanola Stanley, BS, MHA; Marco Oldsmann, BSN; Elliott Haut, MD, PhD; Lynette Mark, MD; Christina Miller, MD; Alexander Hillel, MD ©

Objective: The objective of our study was to assess the impact of a multidisciplinary difficult airway response team (DART), a quality improvement program, in the management of patients with difficult airway associated with oropharyngeal angioedema patients.

Methods: Individual retrospective cohort study. Retrospective review of patient charts from July 2003 to June 2008 (pre-DART) and retrospective review of prospectively collected data from July 2008 to June 2013 (post-DART). Patients with angioedema were identified using International Classification of Disease codes 995.1 and 277.6. Patients were included in the study if an otolaryngologist was consulted for airway management. Patients were excluded if they had a history of angioedema but no active issues. Patient characteristics, airway evaluation, and interventions (intubation/surgical airway) were compared between the pre-DART and post-DART cohort.

Results: The DART team attended to 27 patients with advanced oropharyngeal angioedema. Response time averaged 3.36 minutes. Preintubation fiberoptic airway evaluations were performed in 81% of the post-DART cohort and 56% of the pre-DART cohort. The incidence of patients requiring intubation was higher in the post-DART cohort (18 out of 27 [67%]) than the pre-DART (14 out of 36 [39%]) cohort. One emergency cricothyroidotomy was performed in each of the post-DART and pre-DART cohorts.

Conclusion: Angioedema of the larynx is a predictor of intubation or cricothyroidotomy. Fiberoptic-guided intubation is primarily used for establishing airflow in angioedema patients. A multidisciplinary standardized approach such as the DART program offers adequate time and resources for airway evaluation prior to intervention and allows fewer number of attempts to secure an airway.

Key Words: Oropharyngeal angioedema, difficult airway, multidisciplinary, airway securement techniques, clinical outcomes.

Level of Evidence: 3

Laryngoscope, 129:1360–1367, 2019

From the Johns Hopkins School of Nursing, Baltimore, Maryland; and Outcomes After Critical Illness and Surgery (OACIS) Research Group, Johns Hopkins University (V.P., S.S., M.O.); the Division of Acute Care Surgery, Department of Surgery; Department of Anesthesiology and Critical Care Medicine; Department of Emergency Medicine (E.H.); the Department of Anesthesiology and Critical Care Medicine (C.M.); the Department of Otolaryngology Head and Neck Surgery (A.H.), Johns Hopkins School of Medicine; The Armstrong Institute for Patient Safety and Quality, Johns Hopkins Medicine (E.H.); the Department of Health Policy and Management, The Johns Hopkins Bloomberg School of Public Health (E.H.), Baltimore, Maryland; and the University of Chicago Medicine (G.Z.), Chicago, Illinois, U.S.A

Institution where work was performed: The Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.

Editor's Note: This Manuscript was accepted for publication on September 21, 2018.

*These authors contributed equally to this work.

Research reported in this publication was supported by the National Institute of Deafness and Other Communication Disorders of the National Institutes of Health (NIH) under award number 5K23DC014082 and 1R21DC01722501. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. In addition, research reported in this publication was supported by the Triological Society and American College of Surgeons.

Dr. Haut is a primary investigator of a research grant (1R01HS024547) from the Agency for Healthcare Research and Quality titled "Individualized Performance Feedback on Venous Thromboembolism Prevention Practice." Dr. Haut is a primary investigator of two contracts (CE-12-11-4489) from the Patient-Centered Outcomes Research Institute titled "Preventing Venous Thromboembolism: Empowering Patients and Enabling Patient-Centered Care via Health Information Technology" (CE-12-11-4489) and "Preventing Venous Thromboembolism (VTE): Engaging Patients to Reduce Preventable Harm from Missed/Refused Doses of VTE Prophylaxis" (DI-1603-34596). Dr. Haut receives royalties from Lippincott, Williams, & Wilkins for a book Avoiding Common ICU Errors. Dr. Haut is a paid consultant and speaker for the "Preventing Avoidable Venous Thromboembolism—Every Patient, Every Time" VHA IMPERATIV Advantage Performance Improvement Collaborative. Dr. Haut was the paid author of an article commissioned by the National Academies of Medicine titled "Military Trauma Care's Learning Health System: The Importance of Data-Driven Decision Making," which was used to support the report titled "A National Trauma Care System: Integrating Military and Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury." Dr. Pandian is a coinvestigator for a subaward from University of Vermont/NIH for a study titled, “Novel Arm Restraint for Intubated Patients with Cognitive Impairment to Reduce Agitation, Sedation and Immobility.” Dr. Pandian received a research grant from Smith Medicals and is a paid consultant for Medtronic for tracheostomy-related questions. The authors have no other funding, financial relationships, or conflicts of interest to disclose.

Send correspondence to Vinciya Pandian, PhD, MBA, MSN, RN, ACNP-BC, FAAN, Assistant Professor, International Practice Coordinator, Johns Hopkins School of Nursing, 525 N Wolfe St, Baltimore, MD 21205. E-mail: vpandia1@jhu.edu

DOI: 10.1002/lary.27622
INTRODUCTION
Angioedema is the swelling of the subcutaneous and submucosal regions of the body that occurs with extravasation of plasma into interstitial spaces due to increased vascular permeability.1 Regardless of the underlying pathophysiology, kallikrein-kinin- or histamine-induced angioedema, patients may be at risk for subcutaneous and submucosal swelling in the oropharyngeal region.2–5 The rate of admissions to emergency departments with primary oropharyngeal angioedema has increased from 29.3 in 2006 to 35.8 of 100 thousand people in the United States in 2010.2 Of particular relevance to practicing otolaryngology–head and neck surgeons (OHNS) is advanced oropharyngeal angioedema, a potentially life-threatening condition necessitating urgent airway evaluation and intervention. It is estimated that 10% to 34% of patients presenting with angioedema to an emergency department require intubation.6–9 Advancing age and involvement of multiple oropharyngeal sites increase the need for airway interventions.6,9–12 Moreover, alterations in anatomical landmarks can significantly complicate efforts to secure an airway and may require advanced airway interventions.13

In recent years, there has been a growing emphasis on improved training, decision making, and interdisciplinary collaboration to address the management of patients with difficult airways.14 To address this need at our institution, a difficult airway response team (DART) was established in 2008.15–17 We hypothesize that a DART utilizing a standardized approach facilitates shorter response time and decreases the number of intubation attempts and surgical airways in patients with advanced oropharyngeal angioedema. The objective of our study was to assess the impact of DART, a quality improvement program, in the management of patients with difficult airway associated with oropharyngeal angioedema patients.

MATERIALS AND METHODS

Study Design
An individual retrospective cohort study was conducted. A retrospective review of prospectively collected data was performed in an academic tertiary care center. Patients were divided into two cohorts: angioedema patients managed 5 years before and 5 years after institution of the DART program (pre-DART cohort: July 2003–June 2008; post-DART cohort: July 2008–June 2013).

Quality Improvement Program
The DART program utilized a multidisciplinary team approach involving expert physicians from the departments of anesthesia, general surgery, and OHNS.17 In addition to physicians, advanced practice providers, respiratory therapists, and nurses arrived at the site of call. A DART cart with specialized equipment such as fiberoptic scopes was made available for efficient airway evaluation and securement (Fig. 1). Team members were educated on a standardized approach to managing angioedema patients during the Multidisciplinary Difficult Airway courses offered by the DART program.

Data Collection
Institutional review board approval was obtained for Non-Human Subjects Research/Quality Improvement type of study (NA_0068582) prior to data collection. The following patient characteristics were collected: age, sex, physical location of airway call, etiology for angioedema, anatomical site involvement, and number of sites involved. Location refers to where the patient was physically present at the time of need for airway management and correlated to the location where the patient was at the time or DART activation for patients managed by the DART. Physical location of airway call was broadly categorized into floor/wards, emergency room, and intensive care units (ICU). The etiology for angioedema was classified into Angiotensin Converting Enzyme-Inhibitor, other medications such as penicillin, hereditary, idiopathic, and food allergies. Site involvement included the following: lips, anterior tongue, floor of mouth, soft palate, base of tongue, pharynx, or larynx.11

Data regarding the airway management included whether a formal fiberoptic airway evaluation was done to determine the need for an airway intervention or was performed in conjunction with attempts to establish an airway, number of patients intubated, what methods were used to intubate, whether the attempt was successful, and which service performed the intubation. We also reviewed the charts to find out whether the patient was transported to the operating room for advanced airway interventions (intubation or surgical airway).

Sample
The inclusion and exclusion criteria were designed to restrict analyses to patients with severe angioedema extensive enough to warrant specialist input and/or airway intervention. Patients were included in the study if they had an International Classification of Disease, Ninth Revision, code of 995.1 (angio-neurotic edema), site involvement of the aerodigestive tract, were 18 years or older, and an OHNS consult was obtained indicative of concern for a difficult airway. Patient's medical records were reviewed by two independent practitioners to include only those with new-onset, active oropharyngeal angioedema requiring clinical management. Exclusion criteria comprised patients who had a history of angioedema but without active issues or who did not require any OHNS consult or airway intervention.

Fig. 1. Scenario of patient transnasal intubation using fiberoptic laryngoscopy in the operating room.
RESULTS

After reviewing 820 medical records, 62 patients met the inclusion criteria. Thirty-six patients were identified in the pre-DART, and 27 were in the post-DART cohort. The study flowchart describing allocation of patients into their respective cohorts are described in Figure 2.

Patient Characteristics

The mean age of patients was 54 years in the pre-DART cohort and 50 years in the post-DART. There was no statistical difference in the age, sex, and location of airway call between the pre-DART and post-DART cohorts. There were similar numbers of women and men in the pre-DART cohort, whereas there were more women in the post-DART cohort (Table I). The majority of patients in the pre-DART and post-DART cohort (78% and 56%, respectively) were encountered with angioedema in the emergency department.

Among the pre-DART cohort, the most common etiology of angioedema was ACE-I (58.3%), followed by hereditary (19.4%) and idiopathic (11.1%) causes. The most common etiology of angioedema in the post-DART cohort was medications such as penicillin, sulfamethoxazole and trimethoprim, and metoclopramide (33.3%)—followed by idiopathic (29.6%) and ACE-I (25.9%). The etiology of angioedema was significantly different between pre-DART and post-DART cohorts ($P = 0.003$) (Table I).

TABLE I. Patient Characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pre-DART $n = 36$</th>
<th>Post-DART $n = 27$</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>54.5 ± 13.9</td>
<td>49.9 ± 15.0</td>
<td>0.21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>17 (47.2)</td>
<td>19 (70.4)</td>
<td>0.07</td>
</tr>
<tr>
<td>Men</td>
<td>19 (52.8)</td>
<td>8 (29.6)</td>
<td></td>
</tr>
<tr>
<td>Location of airway call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>3 (8.3)</td>
<td>5 (18.5)</td>
<td>0.21</td>
</tr>
<tr>
<td>Emergency department</td>
<td>28 (77.8)</td>
<td>15 (55.6)</td>
<td></td>
</tr>
<tr>
<td>Intensive care unit</td>
<td>5 (13.9)</td>
<td>7 (25.9)</td>
<td></td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin converting enzyme inhibitor</td>
<td>21 (58.3)</td>
<td>7 (25.9)</td>
<td>0.003</td>
</tr>
<tr>
<td>Other medications</td>
<td>3 (8.3)</td>
<td>9 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Hereditary</td>
<td>7 (19.4)</td>
<td>1 (3.7)</td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>4 (11.1)</td>
<td>8 (29.6)</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>1 (2.8)</td>
<td>2 (7.4)</td>
<td></td>
</tr>
<tr>
<td>Number of anatomical sites involved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19 (52.8)</td>
<td>17 (63.0)</td>
<td>0.42</td>
</tr>
<tr>
<td>2</td>
<td>16 (44.4)</td>
<td>9 (33.3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 (2.8)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1 (3.7)</td>
<td></td>
</tr>
<tr>
<td>Site involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lips</td>
<td>12 (33.3)</td>
<td>13 (48.1)</td>
<td>0.23</td>
</tr>
<tr>
<td>Anterior tongue</td>
<td>10 (27.8)</td>
<td>13 (48.1)</td>
<td>0.10</td>
</tr>
<tr>
<td>Floor of the mouth</td>
<td>4 (11.1)</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>Soft palate</td>
<td>3 (8.3)</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>Base of the tongue</td>
<td>3 (8.3)</td>
<td>3 (11.1)</td>
<td>0.71</td>
</tr>
<tr>
<td>Larynx</td>
<td>8 (22.2)</td>
<td>7 (25.9)</td>
<td>0.73</td>
</tr>
<tr>
<td>Pharynx</td>
<td>13 (36.1)</td>
<td>4 (14.8)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

All data presented in frequencies (percentages), except for variable age, which is presented as mean ± standard deviation.

DART = difficult airway response team.
Overall in 10 years, patients with angioedema related to ACE-I predominantly presented to the emergency department (24 [55.8%]). Thirty-six patients (57%) had a single site affected by angioedema; 25 (40%) had two sites involved; and only two patients (3%) had three or more sites involved. Specific sites involved for each cohort are listed in Table I. There was no statistical difference in the number or anatomic sites involved between the pre- and post-DART cohorts.

Airway Evaluation and Intervention

Fiberoptic laryngoscopic airway evaluations were performed more frequently in the post-DART cohort (n = 22 [82%]) than in the pre-DART cohort (n = 20 [56%]) (P = 0.03). The number of patients who required pharmacologic management alone without any need for airway intervention is displayed in Figure 3. The type of medications administered for angioedema management is shown in Table II.

In the 10 years studied, 32 patients required airway intervention. The number of patients who required airway intervention was higher among the post-DART cohort (18 out of 27 [67%]) than in the pre-DART (14 out of 36 [39%]) (P = 0.03). The average time taken by the post-DART (3.4 minutes) to respond to calls was shorter than by the pre-DART (89.2 minutes) cohort (P < 0.01). Eleven patients (79%) in the pre-DART cohort were transported to the operating room, whereas only nine (50%) patients in the post-DART cohort were transported to the operating room for airway securement. The team that predominately secured an airway was an otolaryngologist in both pre-DART (64%) and post-DART (67%) cohorts (Table II). The service that finally established the airway did not significantly differ between the two cohorts.

The awake transnasal fiberoptic technique was used as the first choice to intubate patients with oropharyngeal obstruction.
angioedema more frequently in the post-DART (72.2%) than in the pre-DART cohort (42.9%). The first-time rate of success in the securement of the airway was significantly higher in the DART cohort (77.8%) than in the pre-DART cohort (42.9%) \((P = 0.04) \). The number of patients who required more than two attempts for airway securement was higher in the pre-DART cohort (8 [57.1%]) than in the post-DART (4 [22.2%]) cohort (Fig. 4).

One patient in each of the pre- and post-DART cohorts received a cricothyroidotomy. The pre-DART patient had received multiple attempts of intubation by the emergency department physicians prior to otolaryngologists being contacted. By the time the otolaryngologist arrived, the patient’s clinical situation had deteriorated significantly, requiring a cricothyroidotomy for a definitive airway. For the patient in the post-DART cohort, an early decision was made to manage the airway in the operating room; however, a cricothyroidotomy was performed after two unsuccessful attempts with nasal fiberoptic intubation and worsening oxygen saturations. There were no airway-related deaths in either cohort.

The odds of requiring an airway intervention was six times higher among patients who had an oropharyngeal angioedema involvement of the larynx regardless of pre- or post-DART cohort, controlling for age, sex, and etiology of oropharyngeal angioedema.

DISCUSSION

Our retrospective study revealed that angioedema involving the larynx is a predictor of intubation or surgical airway, and that the DART program allowed adequate time and resources for airway evaluation prior to airway intervention, increased the use of fiberoptic-guided intubation, and decreased the number of attempts required to secure an airway in angioedema patients with difficult airway.

Predictors of Airway Intervention

Angioedema involving laryngeal structures was a strong predictor of airway interventions. In a review of 367 angioedema patients in three tertiary hospitals, Tai et al. reported age, stridor, hoarseness, dysphagia, drooling, and multiple affected sites to be associated with intubation or tracheostomy.\(^7\) McCormick found involvement of three or more sites to be correlated with the need for airway intervention (39%).\(^1\) Specifically, involvement of anterior or base of the tongue and the larynx correlated with the need for intubation or tracheostomy.\(^1\) In addition, Kieu et al. found that involvement of the soft palate was also associated with the need for airway intervention.\(^1\) In our study, we did not have a strict criteria for...
when to secure the airway, instead, we relied on a combination of clinical presentation and laryngoscopy findings. Involvement of laryngeal structures was found to be the only significant predictor of airway intervention, which is probably attributable to the study being limited to patients for whom an otolaryngologist was consulted. Patients without laryngeal angioedema were most likely successfully intubated by nonotolaryngologists.

Although not a predictor of airway intervention, etiology of oropharyngeal angioedema was noted to be significantly different between the pre- and post-DART cohorts. Tai et al. reported ACEI and angiotensin receptor blockers to be the primary inciting factor (49%). The difference in etiology between our two cohorts correlated with the location of initial presentation with angioedema, a factor that is not alluded to in the Tai et al. study. A majority of patients in the emergency department (n = 24 [56%]) presented with oropharyngeal angioedema related to ACE-I, whereas those in the ICUs and on the floors presented with angioedema due to other medications (n = 8 [40%]) or idiopathic reasons (n = 5 [25%]). It could be postulated that patients receiving ACE-I are monitored closely and that anaphylactic reactions are identified and managed efficiently in the ICUs or on the floors compared to other medications that are not as prone to cause a problem.

Decreased Time to Airway Management

At our institution, the time to respond to an airway emergency has decreased significantly since establishment of the multidisciplinary DART program. Safe management of progressive, symptomatic oropharyngeal angioedema requires early recognition by clinicians and expedient intervention by specialists well versed in various intubation techniques. In most hospital systems across the United States, response teams exist to manage patients with cardiorespiratory emergencies, strokes, and trauma. Although it is acknowledged that the vast majority of intubations are routine, a certain subset of airways are classified as difficult and represent a complex interaction between patient factors, clinical setting, and skills of the practitioners. The unique feature of the DART program that facilitated shorter response time was the creation of a unified paging system that activated airway experts from all departments and equipment from all locations effectively.

Adequate Time for Airway Evaluation Using Fiberoptic Scopes

Easier access to the DART cart (Fig. 5) offered the team sufficient time to perform an airway evaluation using a flexible fiberoptic laryngoscope prior to establishing a plan of care. In the pre-DART era, otolaryngology residents had to travel to obtain a fiberoptic laryngoscope prior to responding to the consult, a contributing factor in the longer response times. The DART carts placed at strategic locations hospital-wide for easier access had an armamentarium of intubation-related equipment, including rigid and fiberoptic scopes. When a DART was activated, the charge nurse brought the DART cart to the site of call, and the respiratory therapist set up the fiberoptic scope so that it was ready for use upon airway experts’ arrival. Well-designed difficult airway carts have been shown to reduce nonvalue-added time and walking distance to retrieve the equipment. Whereas the number of difficult airway carts needed in operating suites has been recommended as one cart for every 15 to 20 anesthesia sites, the number of difficult airway carts needed outside the operating suites and how they should be strategically located have not been formally studied.

Effective airway evaluation using the right equipment facilitates development of a definitive airway plan and backup alternatives for patients who require intubation. Alternatively, fiberoptic laryngoscopy can aid in identification of the subset of patients with only soft palate, base of tongue, or posterior pharyngeal wall involvement without severe obstruction of the glottis or a need for emergent airway intervention. In such patients, pharmacologic management, care in a monitored setting, and serial examinations until no further progression of angioedema is observed could be implemented. A higher rate of success of first intubation (78%) among the post-DART cohort could be a function of initial fiberoptic laryngoscopy evaluation (Fig. 4). Moreover, the uniform use of awake fiberoptic-guided intubation (72%) was likely informed by initial airway evaluation.

Fig. 5. Various views of a DART cart. DART = difficult airway response team.
Standardization of Airway Management Approach

Awake transnasal fiberoptic-guided intubation was used more commonly as the first choice of airway securement technique in our study. In a study of 33 angioedema patients comparing different techniques of intubation, Wood et al. proposed that videolaryngoscopy could be used to intubate faster without an increase in adverse events compared to fiberoptic bronchoscopy. Although videolaryngoscopes are available in our armamentarium, fiberoptic laryngoscopy proved to be the most successful in securing an airway in our patients.

Since the inception, the DART program has managed 360 adult difficult airways representing 8% of all code activations within the Johns Hopkins hospital system using a standardized approach. The DART program has also offered 23 multidisciplinary difficult airway courses, training 499 clinicians from various specialties (including 53 residents from OHNS) on the standardized approach to managing difficult airways involving especially advanced oropharyngeal angioedema. Specific components related to airway management of oropharyngeal angioedema include didactic lectures, hands-on sessions to become competent in using both flexible and rigid fiberoptic scopes, surgical airways, and high-fidelity simulation that enhances team-building among clinicians from various disciplines. In our study, as a result of these educational efforts, the availability of equipment, and the timely arrival of airway experts such as otolaryngologists, a standardized approach is typically implemented using the awake transnasal fiberoptic method as the first choice for securing the airway in patients with oropharyngeal angioedema, although variations may exist.

Decrease in the Number of Attempts to Secure Airway

A higher number of patients requiring airway securement among the post-DART cohort suggests that DART functions by appropriately identifying the sickest patients who most require intubation or surgical airway. However, the number of attempts taken to intubate a patient with angioedema was fewer when DART was involved. The decrease in the number of attempts can be associated with the higher rate of success of first attempt among the post-DART cohort. This can be attributed to early recognition of difficult airway, effective activation of the DART, timely response of airway experts such as otolaryngologists, team collaboration, and easier access to resources. Early recognition was obtained by the multidisciplinary airway course education, alerts in the hospital electronic medical documentation system, and placement of identification bracelets on patients with oropharyngeal angioedema. It is also possible that the increased rate of airway intervention post-DART may be attributed to a lower threshold to intubate, prompted by education and awareness of airway safety. Lastly, given the evidence that the earlier use of fiberoptic scopes can decrease the number of attempts required to establish an airway among patients with advanced oropharyngeal angioedema, we feel that it is crucial to include fiberoptic scopes in the difficult airway carts.

Adoption of a Multidisciplinary Airway Team

Hospitals recognize the need for a multidisciplinary DART; however, the makeup of that team may be challenging due to the lack of in-house availability of some of the services, especially OHNS. Although a resident is present in our hospital at all times, we feel that our multidisciplinary airway team model may be adopted by hospitals that do not have an in-house OHNS surgeon. The presence of a general trauma surgeon is critical to implementation of the system. In most hospitals, an attending general trauma surgeon typically is present at all times and is capable of airway management, specifically emergency surgical airway (ernythroidotomy). During the day at our institution, the OHNS service has a dedicated faculty present in the hospital for difficult airway calls. However, during the night and on weekends, only the OHNS junior resident is in the hospital while the OHNS attending and chief resident are both on home calls. Should a DART occur during those times, the general trauma surgeon acts as the surgical attending physician supervising the OHNS junior resident during difficult airway cases until the OHNS attending surgeon arrives. The system of general trauma surgeon coverage practiced at the study institution could easily be translatable to other hospitals where OHNS is on home call. Such a multidisciplinary airway team model has been successful, in part, due to the regular multidisciplinary difficult airway course in which residents and attendings from respective departments participate.

Limitations

This study has limitations that are primarily related to the documentation issues in the pre-DART cohort. There is a possibility that the actual number of patients who required intubation in the pre-DART cohort is larger than analyzed because, prior to 2008, a large proportion of medical documentation, including notes from consulting services such as otolaryngology, only existed in original state as written documents and may not have been formally incorporated into the hospital electronic medical records system. Similarly, airway interventions performed by anesthesiologists alone prior to 2008 may be underestimated for the same reason. A large number of coding errors for angioedema for the pre-DART cohort is also likely suggestive of a discrepancy between the written and electronic form of the hospital medical records. Such documentation challenges among the pre-DART cohort prevented any objective comparisons regarding the actual severity of oropharyngeal angioedema between the two cohorts.

CONCLUSION

Angioedema involving the laryngeal structures was a strong predictor of airway interventions among all patients in our study. DART had sufficient time to
perform a fiberoptic airway evaluation prior to establishing a plan of care as a result of shorter response time and better access to equipment. Awake transnasal fiberoptic-guided intubation is used more commonly as the first choice of airway securement techniques. The number of attempts taken to secure an airway was fewer with DART. A multidisciplinary, standardized approach is recommended for safe and effective management of oropharyngeal angioedema.

ACKNOWLEDGMENT
Martin Blair for editorial support.

BIBLIOGRAPHY

18. Staats/Intercooled [computer program]. College Station, TX: StaatsCorp LLC; 2015.