The Role of Oral Steroids in the Treatment of Phonotraumatic Vocal Fold Lesions in Women

Milan R. Amin, MD¹, Stratos Achlatis, MD¹, Shirley Gherson, MA¹,², Yixin Fang, PhD³,⁴, Binhuan Wang, PhD⁴, Hayley Born, MD⁵, Ryan C. Branski, PhD¹, and Aaron M. Johnson, PhD¹

Abstract
Objectives. (1) To determine the short-term effectiveness of oral steroids in women with benign vocal fold lesions and (2) to determine the effectiveness of adjuvant oral steroids in women undergoing voice therapy for benign vocal fold lesions.

Study Design. Randomized, double-blind, placebo-controlled clinical trial.

Setting. Tertiary voice care center.

Subjects and Methods. Thirty-six patients undergoing voice therapy for the treatment of phonotraumatic vocal fold lesions randomly received either a 4-day course of oral steroids or a placebo prior to initiating voice therapy. Voice Handicap Index–10 (VHI-10) scores, video and audioperceptual analyses, acoustic and aerodynamic analyses at baseline, and patient perception of improvement after a short course of steroids or a placebo and at the conclusion of voice therapy were collected.

Results. Thirty patients completed the study, of whom 27 (only female) were analyzed. The primary outcome measure, VHI-10, did not improve after the 4-day course of steroids or placebo. Secondary measures similarly showed no improvement with steroids relative to placebo. Voice therapy demonstrated a positive effect on both VHI-10 and patient-perceived improvement of voice in all subjects.

Conclusion. A short course of oral steroids did not benefit women with phonotraumatic vocal fold lesions. In addition, steroids had little beneficial effect when used adjunctively with voice therapy in this patient cohort.

Keywords
voice, larynx, steroid, glucocorticoids, vocal fold, voice therapy

Received June 29, 2018; revised September 10, 2018; accepted September 13, 2018.

One of the more confounding statements in the recent Clinical Practice Guideline for hoarseness was related to the paucity of evidence for the use of steroids for treating patients with hoarseness. Specifically, the document only suggested a role for steroids to treat “allergic laryngitis” in vocal performers. We previously confirmed that otolaryngologists commonly employ oral steroids for a variety of diagnoses underlying voice complaints. Despite the widespread use of oral steroids for the treatment of patients with voice complaints, little evidence supports their use.

The mainstays of treatment of benign vocal fold lesions remain behavioral management (voice therapy) and surgical excision. Voice therapy is helpful in the long term, but its effect is delayed and not helpful, for example, in a performer with an acute issue. Surgical excision similarly requires a commitment to a longer-term process and is not typically used for a short-term fix. Therefore, steroids have traditionally been used in situations where short-term improvement is needed.

A short-term high dose of oral steroids, such as 30 mg or greater of prednisone equivalent per day, may help reduce the inflammatory component of benign vocal fold lesions and reduce swelling in the striking zone on the vocal fold contralateral to a unilateral lesion. In theory, this reduced

¹NYU Voice Center, Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, New York, New York, USA
²Rusk Institute of Rehabilitation, New York University School of Medicine, New York, New York, USA
³Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
⁴Department of Population Heath, Division of Biostatistics, New York University School of Medicine, New York, New York, USA
⁵Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA

This article was presented at the 2016 AAO-HNSF Annual Meeting and OTO EXPO; September 18-21, 2016; San Diego, California.

Corresponding Author:
Aaron M. Johnson, PhD, NYU Voice Center, Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, 345 East 37th Street, Suite 306, New York, NY 10016, USA. Email: aaron.johnson@nyumc.org
swelling would improve glottal configuration and vocal fold vibration, thereby improving overall vocal quality and reducing phonation effort. After taking a short course of steroids, patients not only may experience these immediate effects but also may then be primed to be better able to initiate the exercises and techniques they learn in voice therapy.

We sought to test this theory by examining the effects of oral steroids on short-term and long-term voice outcomes in patients with benign, phonotraumatic, vocal fold pathology. Specifically, 2 hypotheses were tested: (1) a short course of oral steroids will reduce self-perceived voice handicap and improve vocal function, and (2) a short course of oral steroids will "prime" patients for improved voice therapy outcomes. These hypotheses were based on our emerging clinical experience as the literature is void of supporting studies.

Materials and Methods

The current study was approved by the Institutional Review Board at the New York University School of Medicine. The general experimental design is summarized in Figure 1. Subjects were recruited from the treatment-seeking population at the Voice Center at NYU Langone Health. Males and females aged between 18 and 80 years with phonotraumatic lesions deemed causative of dysphonia were included if voice therapy was determined as the initial treatment modality. Exclusion criteria included recent use of any glucocorticoids (oral, inhaled, or intravenous) in the prior 3 months, presence of significant neurological impairment, history of voice therapy, radiation to the neck, laryngeal surgery within the past 12 months, or the presence of any medical condition whereby oral glucocorticoids were contraindicated.

A placebo-controlled, double-blinded, randomized prospective study design was employed. The speech-language pathologist who provided voice therapy and individuals involved in collection and analysis of data were blinded to drug or placebo conditions. Following consent, subjects were randomized to receive a 4-day course of either oral steroids (40 mg prednisone daily) or placebo prior to the initiation of voice therapy. Compliance and side effects were assessed through a questionnaire.

Prior to the initiation of therapy but after taking the "drug," subjects returned for an interim evaluation to collect the videostroboscopic and vocal function measures identical to those collected at baseline (see following section for detailed description of measures). Subjects then initiated voice therapy, receiving 6 weekly sessions. The first session was divided into a brief review of patient symptoms, documentation of therapeutic goals, a discussion of vocal hygiene relevant to the patient, and an introduction of basic training exercises. Subsequent sessions were individualized to specific patient goals, compensatory behaviors, and response to techniques. All sessions included stretches and laryngeal massage techniques to reduce musculoskeletal strain; basic training exercises to optimize coordination of airflow, vocal fold vibration, and resonance (eg, humming, lip trills, nasal pinch vocalizations); and carryover work with focused attention to application of basic training techniques. Increased proprioception of vocal strain and resonance was instilled at every level of treatment. Home exercises were audio or video recorded and a written version of the homework provided for improved compliance. Subjects returned after the completion of therapy to obtain videostroboscopic and vocal function measures.

Dependent Variables and Data Collection

Voice Handicap Index–10. Subjects completed the Voice Handicap Index–10 (VHI–10) at each visit. The comparison of VHI–10 scores within subjects from baseline to the subsequent interim and final evaluations served as the primary dependent variable.

Perceptual analysis. Laryngeal videostroboscopic imaging (Pentax Medical, Montvale, New Jersey) was performed at each visit (baseline, interim, and final). Video clips were prepared to include clear imaging of the pathology for at least 3 seconds of continuous voicing at modal pitch. Three fellowship-trained laryngologists reviewed paired clips (eg, baseline followed by interim and baseline followed by final) side-by-side in random order. Reviewers rated the second clip in the pair as worse, same, or better than the first clip on 4 parameters: (1) mucosal wave, (2) glottal closure (3), lesion size, and (4) overall appearance.

In addition, the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) stimulus sentences were captured via the Computerized Speech Laboratory (Pentax). Three speech-language pathologists with expertise in voice who were uninvolved in the current experiment rated the overall severity of dysphonia of randomly presented audio clips using a 100-point visual scale.

Twenty percent of both auditory and video samples were repeated to quantify intrarater reliability. For each video-perceptual rating, intrarater reliability and interrater agreement were evaluated using Kendall’s coefficient of concordance (Kendall’s W) for ordinal responses. Kendall’s W ranges from 0 (no agreement) to 1 (perfect agreement). For auditory-perceptual analyses, intrarater reliability and interrater agreement were evaluated via intraclass correlation coefficient (ICC) estimates.

Aerodynamic analysis. Aerodynamic analyses employed the voicing efficiency protocol of the Phonatory Aerodynamic System (Pentax). While tightly holding the flow mask over their mouth and nose, subjects produced /pa/ 5 times at their most comfortable pitch and loudness at a rate of approximately 1.5 syllables per second. Pressure and flow signals were monitored in real time to check for pressure tube blockage or improper mask placement. Laryngeal airway resistance (Rsaw in cmH2O/L/s) was calculated from the mean peak air pressure (cmH2O) and mean airflow during voicing (L/s) from the middle 3 syllables.

Acoustic analysis. In addition to the CAPE-V sentences, subjects produced a sustained /a/ vowel. A frequency-stable, 1.5-second, medial portion of the vowel and the all-voiced
sentence “We were away a year ago” were used to calculate the Acoustic Voice Quality Index (AVQI) v. 3.01 via an automated Praat script. The AVQI combines 6 acoustic measures in a linear model to arrive at a single multivariate measurement that correlates with auditory-perceptual judgment of voice quality.

Patient-reported measures. At the interim visit, subjects described the effect of the “drug” on overall change in voice and on vocal quality relative to baseline as “better, worse, or same.” Subjects also reported compliance with medication and any adverse events or side effects. Following completion of voice therapy, subjects again rated change (better, worse, or same) in overall voice and vocal quality. The responses of “worse” and “same” were collapsed into a single group for binary analysis (improvement/no improvement).

Statistical Analysis
Based on a review of our clinical outcomes, we assumed a mean (SD) ΔVHI-10 of 10 (7) for the placebo plus voice therapy group and a ΔVHI-10 of 14 (7) for the steroid plus voice therapy cohort. Using these assumptions with an α error level of 0.05 and a power of 80%, a sample size of 20 in each group was determined to be adequate to demonstrate a statistical difference between the groups.

Repeated-measures analysis of variance (ANOVA) was used to analyze the effects of drug type (steroid or placebo), time point (baseline, interim, or final visit), and interaction between drug type and time point on the continuous outcome variables (VHI-10, auditory-perceptual ratings, and the acoustic and aerodynamic measures). In the case of a significant main effect or interaction, post hoc pairwise t tests were used to compare group differences. One-tailed t
tests were selected to match our directional hypotheses. Cohen’s d effect sizes were also calculated to explore the magnitude of any significant differences.

The video-perceptual ratings of worse, same, and better were coded as $-1, 0,$ and $1,$ respectively. The nonparametric Wilcoxon rank-sum test was used to test for differences between steroid and placebo groups in the mean ratings of each of the 4 video-perceptual parameters. In addition, the Wilcoxon rank-sum test was used to test the hypothesis that each parameter would be judged as improved (mean rating >0) at each time point.

The χ^2 test for equality of proportions was used to test for differences between steroid and placebo groups on the binary outcome variables of patient-reported improvements in overall voice and voice quality, as well as the occurrence of reported side effects at the interim and final visits. All statistical analyses were performed using SAS 9.4 (SAS Institute, Cary, North Carolina) or R version 3.4.3 running in RStudio.15,16

Results

Thirty subjects completed the study (27 females and 3 males). Due to the low number of male subjects, only data from female subjects were analyzed. The mean (SD) age of the final study cohort was 27.4 (7.07) years. Fourteen of the 27 subjects received steroids and 13 received a placebo. Twenty-two of the subjects were diagnosed with bilateral lesions. Twenty-four of the subjects had lesions with an inflammatory component, defined as edema and erythema surrounding the lesion(s).

VHI-10

Repeated-measures ANOVA confirmed a main effect of time point on VHI-10 score ($F_{2,50} = 3.411, P = .04$; Figure 2). No main effect for drug type was observed ($F_{2,25} = 0.31, P = .58$). Similarly, no interaction between time point and drug type ($F_{2,50} = 0.055, P = .95$) was noted. Post hoc pairwise 1-tailed t tests between VHI-10 scores at the 3 time points revealed lower (improved) VHI-10 scores across all subjects (steroid and placebo groups combined) at the final visit compared to both the baseline and interim visits ($P = .04$ and $P = .02$, respectively). However, Cohen’s d indicated small effect sizes in these differences with 95% confidence intervals (CIs) crossing zero for both the baseline compared to final visit ($d = 0.35; 95\% \text{ CI}, –0.20$ to 0.90) and the interim compared to final visit ($d = .40; 95\% \text{ CI}, –0.15$ to 0.95). No difference in VHI-10 was observed between baseline and interim visits ($P = .72$).

Perceptual Ratings

Table 1 shows interrater and intrarater reliability of video-perceptual ratings. Due to moderate agreement between the 3 raters, the median rating for each of the 4 visual-perceptual parameters was employed to test differences in ratings between the steroid and placebo groups and the effect of time point (improvement at interim visit and improvement at final visit). No significant differences were noted in the distribution of ratings between the steroid and placebo groups in any of the 4 video-perceptual ratings ($P > .05$). Therefore, the steroid and placebo groups were

<table>
<thead>
<tr>
<th>Videostroboscopic Rating</th>
<th>Interrer Reliability</th>
<th>Intrarater Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rater A</td>
<td>Rater B</td>
</tr>
<tr>
<td>Mucosal wave</td>
<td>0.48</td>
<td>0.65</td>
</tr>
<tr>
<td>Glottal closure</td>
<td>0.52</td>
<td>0.89</td>
</tr>
<tr>
<td>Lesion size</td>
<td>0.55</td>
<td>0.87</td>
</tr>
<tr>
<td>Overall appearance</td>
<td>0.57</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Figure 2. Plots showing the main effect of time point on Voice Handicap Index–10 (VHI), laryngeal airway resistance (Rraw), and Acoustic Voice Quality Index (AVQI).
combined to test for improvements at the interim and final visits. At the interim visit, raters judged all ratings (mucosal wave, glottal closure, lesion size, and overall appearance) as improved (mean rating >0) relative to baseline (Figure 3).

At the final visit, raters only judged 2 ratings, mucosal wave and overall appearance, as improved relative to baseline. Overall, raters judged the average videostroboscopic appearance of all subjects as improved at both the interim and final visits relative to baseline.

Auditory-perceptual ratings had poor interrater reliability (ICC = 0.427; 95% CI, 0.209 to 0.603). Intrarater rater reliability was poor for 2 raters (ICC = 0.267; 95% CI, –0.204 to 0.642; ICC = 0.32; 95% CI, –0.149 to 0.675) and good for the third rater (ICC = 0.706; 95% CI, 0.378 to 0.878). Given the poor reliability, further group analysis was not performed.

Laryngeal Airway Resistance

Two subjects in the steroid group did not reliably complete the aerodynamic testing at the interim visit and were removed from analysis. Repeated-measures ANOVA revealed a main effect of time point on R_{law} ($F_{2,46} = 6.984$, $P = .002$) but no main effect of drug type ($F_{1,23} = 1.058$, $P = .31$) and no interaction between time point and drug type ($F_{2,46} = 1.955$, $P = .15$). Post hoc pairwise 1-tailed t tests comparing R_{law} at the 3 time points revealed lower (improved) R_{law} across all subjects (steroid and placebo groups combined) at the interim and final visits compared to baseline ($P = .001$ and $P = .006$, respectively), with medium effect sizes from both the baseline to interim visit ($d = 0.68; 95\% CI, 0.10$ to 1.27) and baseline to final visit ($d = 0.54; 95\% CI, –0.04$ to 1.12). No significant difference in R_{law} was observed between interim and final visits ($P = .21$). Therefore, R_{law} decreased at the interim visit in both drug groups, and that decrease was maintained after voice therapy.

AVQI

Similar changes were observed in the composite acoustic measure, AVQI. A significant main effect for time on AVQI ($F_{2,50} = 4.473$, $P = .02$) was observed with no effect of drug type ($F_{1,25} = 0.059$, $P = .81$) and no interaction between time and drug ($F_{1,50} = 0.92$, $P = .41$). A decrease in AVQI from the baseline visit compared to both the interim and final visits ($P = .01$ and $P = .007$, respectively) drove this main effect of time. The difference in AVQI between the interim and final visits did not achieve significance ($P = .22$). Cohen’s d indicated medium effect sizes with confidence intervals just crossing zero for both the baseline visit vs the interim visit ($d = 0.46; 95\% CI, –0.09$ to 1.01) and the baseline vs the final visit ($d = .51; 95\% CI, –0.04$ to 1.07).

Patient-Reported Measures

At the interim visit, most subjects in both groups reported no improvement in overall vocal ability or vocal quality (Table 2). Furthermore, no differences were observed in the proportion of subjects who reported overall improvement in
vocal ability between the steroid and placebo groups ($\chi^2 = 0.60, P = .48$). Similarly, the proportion of subjects who reported improved vocal quality between the steroid and placebo groups was not significant ($\chi^2 < 0.001, P = 1$).

Self-reported data were missing from 3 subjects at the final visit following voice therapy (Table 2). All but 1 subject reported overall improved vocal ability and voice quality, indicating vocal therapy was helpful regardless of drug group. Only 1 subject in the placebo group reported her overall vocal ability and quality were the same after voice therapy.

The same proportion of subjects reported side effects in both the steroid and placebo groups. Eight of the 15 subjects who received steroids reported minimal side effects, and 5 of 12 subjects in the placebo group also reported minimal side effects ($\chi^2 = 0.008, P = .93$). In the subjects who took steroids, 7 of 15 reported trouble sleeping, 2 subjects reported euphoria, and 1 each reported bloating and increased appetite. Subjects on placebo reported increased appetite (3/12), and 1 each reported trouble sleeping, euphoria, anxiety, bloating, and sinus infection/upper respiratory infection.

Discussion

The discovery of glucocorticoids in the 1940s to treat severe rheumatoid arthritis irreversibly changed the treatment of inflammatory disorders and led to the award of a Nobel Prize. Steroids have since found their way into the treatment of inflammatory disorders and led to the award of a Nobel Prize.17

Table 2. Patient-Reported Ratings of Improvement in Overall Voice and in Vocal Quality at the Interim (Poststeroid or Postplacebo) and Final (Posttherapy) Visits Relative to Baseline.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Voice Improved Overall, No.</th>
<th>Vocal Quality Improved, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Interim visit (n = 27)</td>
<td>Steroid</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Final visit (n = 24)</td>
<td>Steroid</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Of course, this study may have been limited by the lack of good outcome measures. Despite our best effort to be comprehensive in including multiple types of outcome measures, most of these measures were problematic. Audioperceptual ratings were unreliable and had to be discarded. Even videoperceptual ratings had only moderate agreement. VHI-10 ratings are subjective and, therefore, can be governed by a placebo effect. Acoustic measures likely have less fidelity in cases with only mild to moderate pathology, as was the case in most of our subjects. Both in this study and in our clinical experience, patients report feeling better after taking a short course of steroids. Either we have not yet found an appropriate outcome measure to capture the patient-perceived improvement, or it is simply a placebo effect. To mitigate these issues, future similar studies would likely benefit from studying more severely dysphonic patients.

Conclusions

This double-blinded, placebo-controlled trial of a short course of oral steroids prior to the initiation of voice therapy
did not demonstrate improvement in women with benign vocal fold lesions.

Author Contributions

Milan R. Amin, conception and design, acquisition and interpretation of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Stratos Achlatis**, conception and design, acquisition and interpretation of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Shirley Gherson**, conception and design, acquisition and interpretation of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Yixin Fang**, conception and design, analysis of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Binhuan Wang**, conception and design, analysis of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Hayley Born**, conception and design, acquisition of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Ryan C. Branski**, conception and design, acquisition and interpretation of data, drafting and revising, final approval of the version to be published, agreement to be accountable; **Aaron M. Johnson**, analysis and interpretation of data, drafting and revising, final approval of version to be published, agreement to be accountable.

Disclosures

Competing interests: None

Sponsorships: None.

Funding source: American Academy of Otolaryngology—Head and Neck Surgery Foundation Maureen Hanley Research Grant (principal investigator: Amin), National Institute of Deafness and Other Communication Disorders of the National Institutes of Health, grant K23DC014517 (principal investigator: Johnson).

References